1: Tìm x
a) Ta có: \(2\cdot3^x=3^{12}\cdot34+20\cdot27^4\)
\(\Leftrightarrow2\cdot3^x=3^{12}\cdot34+20\cdot3^{12}\)
\(\Leftrightarrow2\cdot3^x=3^{12}\cdot\left(34+20\right)\)
\(\Leftrightarrow2\cdot3^x-3^{12}\cdot54=0\)
\(\Leftrightarrow2\cdot3^x=3^{12}\cdot2\cdot27\)
\(\Leftrightarrow3^x=3^{12}\cdot3^3\)
\(\Leftrightarrow3^x=3^{15}\)
hay x=15
Vậy: x=15
b) Ta có: \(\left(2^x+1\right)^2+3\left(2^2+1\right)=2^2\cdot10\)
\(\Leftrightarrow\left(2^x+1\right)^2=40-3\cdot5=25\)
\(\Leftrightarrow\left[{}\begin{matrix}2^x+1=5\\2^x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2^x=4\\2^x=-6\left(loại\right)\end{matrix}\right.\Leftrightarrow x=2\)
Vậy: x=2