Bài 4: Cấp số nhân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngoc Chau

1) Tìm số hạng đầu u1 và công bội q của Cấp Số Nhân (Un)

a) Biết u2=-10, u3=-20

b) Biết u3=2, u6=1/4

c) Biết{ u1-u3=-9; u3-u5=-36}

2)Tìm S8 của Cấp Số Nhân (Un) biết:

{u4-u2=24; u3-u1=12}

3) Cho Cấp Số Nhân(Un) với công bội q :

a) biết u1=4; q =-2. Tính u10 và S15

4) Chứng minh : Dãy số sau là cấp số nhân

a) Dãy số có số hạng tổng quát : Un= 5x(1/2)^2n-1

5) Cho q=1/3,S5 =121.Tìm u1

6) Cho Cấp Số Nhân có u2=4 và u4=9. Tính giá trị của u3.

Nguyễn Việt Lâm
19 tháng 4 2020 lúc 9:47

1.

\(\left\{{}\begin{matrix}u_2=u_1q=-10\\u_3=u_1q^2=-20\end{matrix}\right.\) \(\Rightarrow\frac{u_1q^2}{u_1q}=\frac{-20}{-10}\Rightarrow q=2\)

\(\Rightarrow u_1=\frac{-10}{q}=-5\)

b/ \(\left\{{}\begin{matrix}u_1q^2=2\\u_1q^5=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow q^3=\frac{1}{8}\Rightarrow q=\frac{1}{2}\)

\(\Rightarrow u_1=\frac{2}{q^2}=8\)

c/ \(\left\{{}\begin{matrix}u_1-u_1q^2=-9\\u_1q^2-u_1q^4=-36\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1\left(1-q^2\right)=-9\\u_1q^2\left(1-q^2\right)=-36\end{matrix}\right.\)

\(\Leftrightarrow\frac{u_1q^2\left(1-q^2\right)}{u_1\left(1-q^2\right)}=\frac{-36}{-9}\Rightarrow q^2=4\Rightarrow\left[{}\begin{matrix}q=2\\q=-2\end{matrix}\right.\)

\(\Rightarrow u_1=\frac{-9}{1-q^2}=\frac{-9}{-3}=3\)

Nguyễn Việt Lâm
19 tháng 4 2020 lúc 9:51

Bài 2:

\(\left\{{}\begin{matrix}u_1q^3-u_1q=24\\u_1q^2-u_1=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1q\left(q^2-1\right)=24\\u_1\left(q^2-1\right)=12\end{matrix}\right.\)

\(\Leftrightarrow\frac{u_1q\left(q^2-1\right)}{u_1\left(q^2-1\right)}=\frac{24}{12}\Rightarrow q=2\Rightarrow u_1=\frac{12}{q^2-1}=4\)

\(\Rightarrow S_8=u_1.\frac{q^8-1}{q-1}=4\left(2^8-1\right)=...\)

Câu 3:

\(u_{10}=u_1q^9=4\left(-2\right)^9=-2^{11}\)

\(S_{15}=u_1.\frac{q^{15}-1}{q-1}=4.\frac{\left(-2\right)^{15}-1}{-3}=\frac{3}{4}\left(2^{15}+1\right)\)

Nguyễn Việt Lâm
19 tháng 4 2020 lúc 9:58

Bài 4:

\(u_n=5.\left(\frac{1}{2}\right)^{2n-1}=10.\left(\frac{1}{2}\right)^{2n}=10\left(\frac{1}{4}\right)^n\)

Là cấp số nhân với \(u_1=10\) và công bội \(q=\frac{1}{4}\)

Bài 5:

\(S_5=u_1.\frac{q^4-1}{q-1}=u_1.\frac{\left(\frac{1}{3}\right)^4-1}{\frac{1}{3}-1}=\frac{121}{81}u_1\)

\(\Rightarrow u_1=\frac{81}{121}S_5=81\)

Bài 6:

\(\left\{{}\begin{matrix}u_1q=4\\u_1q^3=9\end{matrix}\right.\) \(\Rightarrow\left(u_1q^2\right)^2=36\Rightarrow\left[{}\begin{matrix}u_1q^2=6\\u_1q^2=-6\end{matrix}\right.\)

\(u_3=u_1q^2\Rightarrow u_3=\pm6\)


Các câu hỏi tương tự
phương mai
Xem chi tiết
Lan Hương
Xem chi tiết
nắng Mộtmàu_
Xem chi tiết
Dung Huynh
Xem chi tiết
Hảo
Xem chi tiết
Đặng Hồ Uyên Thục
Xem chi tiết
Nguyễn Thanh Trúc
Xem chi tiết
ánh tuyết nguyễn
Xem chi tiết
Sengoku
Xem chi tiết