b: \(=\dfrac{x-1}{\sqrt{y-1}}\cdot\dfrac{\sqrt{y-1}}{\left(x-1\right)^2}=\dfrac{1}{x-1}\)
c: \(=4x-2\sqrt{2}+\sqrt{x^2}=4x-2\sqrt{2}+\left|x\right|\)
\(=-4\sqrt{2}-2\sqrt{2}+\sqrt{2}=-5\sqrt{2}\)
b: \(=\dfrac{x-1}{\sqrt{y-1}}\cdot\dfrac{\sqrt{y-1}}{\left(x-1\right)^2}=\dfrac{1}{x-1}\)
c: \(=4x-2\sqrt{2}+\sqrt{x^2}=4x-2\sqrt{2}+\left|x\right|\)
\(=-4\sqrt{2}-2\sqrt{2}+\sqrt{2}=-5\sqrt{2}\)
Rút gọn biểu thức 1) \(\dfrac{\sqrt{14}-\sqrt{21}}{\sqrt{7}}\) .
2) \(\dfrac{\sqrt{a^2+5a+6}}{\sqrt{a+3}}\)
3) \(\sqrt{3\left(x^2-10x+25\right)}.\sqrt{27}\) với x < 5
4)
\(\dfrac{y}{x}\sqrt{\dfrac{x^2}{y^4}}\) với x > 0; y < 0
5) \(\dfrac{1}{x-y}.\sqrt{x^6\left(x-y\right)^4}\) với x \(\ne\) y
1.Giải hệ phương trình:
\(\left\{{}\begin{matrix}2x+y=5\\3x-2y=11\end{matrix}\right.\)
2.Rút gọn biểu thức:
B=\(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\right):\dfrac{1}{\sqrt{x}+2}\)với x>0;x\(\ne\)9
rút gọn :
a, \(\sqrt{x+4\sqrt{ }X-4}+\sqrt{x-4\sqrt{ }x-4}vớix>=8\)
b,\(\sqrt{2x-1+2\sqrt{ }x^2-x}+\sqrt{2x-1-2}\sqrt{x^2}-x\)
c, \(\dfrac{\sqrt{x-2\sqrt{x+1}}}{x+2\sqrt{ }x+1}\left(x>=0\right)\)
d, \(\dfrac{x-1}{\sqrt{ }y-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y+1}\right)^2}{\left(x-1\right)^4}}\)
Rút gọn các biểu thức sau:
\(A=\left(\dfrac{1}{\sqrt{a}+2}+\dfrac{1}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}}{a-4}\)
\(B=\left(\dfrac{4x}{\sqrt{x}-1}-\dfrac{\sqrt{x}-2}{x-3\sqrt{x}+2}\right).\dfrac{\sqrt{x}-1}{x^2}\)
\(C=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{x-9}\right).\dfrac{2\sqrt{x}+6}{\sqrt{x}-1}\)
\(D=\left(\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2}{\sqrt{x}+3}\right):\left(1+\dfrac{6}{x-9}\right)\)
\(E=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{9+x}{9-x}\right).\left(3\sqrt{x}-x\right)\)
help
Rút gọn các biểu thức sau:
\(A=\left(\dfrac{1}{\sqrt{a}+2}+\dfrac{1}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}}{a-4}\)
\(B=\left(\dfrac{4x}{\sqrt{x}-1}-\dfrac{\sqrt{x}-2}{x-3\sqrt{x}+2}\right).\dfrac{\sqrt{x}-1}{x^2}\)
\(C=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{x-9}\right).\dfrac{2\sqrt{x}+6}{\sqrt{x}-1}\)
\(D=\left(\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2}{\sqrt{x}+3}\right):\left(1+\dfrac{6}{x-9}\right)\)
\(E=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{9+x}{9-x}\right).\left(3\sqrt{x}-x\right)\)
help
rút gọn
\(\dfrac{9-x}{\sqrt{x}+3}-\dfrac{9-6\sqrt{x}+x}{\sqrt{x}-3}-6\) (với x>_9)
\(\left(\dfrac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)/\left(\dfrac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\) (với x>=0, x#1)
\(\sqrt{x+12+6\sqrt{x+3}}-\sqrt{x+12-6\sqrt{x+3}}\) ( với x>_6)
\(\sqrt{m^2+6m+9}+\sqrt{m^2-6m+9}\) (m bát kì)
\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\dfrac{x+1}{\sqrt{x}}\)
\(\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}/\dfrac{\sqrt{x}-\sqrt{y}}{x-y}\)
\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(\dfrac{x-1}{\sqrt{x}+1}-2\right)\)
\(\left(\dfrac{\sqrt{x}+2}{3\sqrt{x}}+\dfrac{2}{\sqrt{x}+1}-3\right)/\dfrac{2-4\sqrt{x}}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1-x}{3\sqrt{x}}\)
1, \(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)
2, \(\dfrac{\left(\sqrt{x}+\sqrt{y}\right)-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\dfrac{y\sqrt{x}-x\sqrt{y}}{\sqrt{xy}}\)
3, \(\dfrac{9\sqrt{a}-b\sqrt{5}}{\sqrt{a}-\sqrt{5}}+\sqrt{ab}\)
4, \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)\)
5, \(\dfrac{\sqrt{x}+1}{x-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
Rút gọn biểu thức
\(a.\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(b.\sqrt{41-\sqrt{160}}+\sqrt{49+\sqrt{90}}\)
\(c.\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\left(x\ge0;y\ge0;x\ne y\right)\)
\(d.\dfrac{y+1-2\sqrt{y}}{\sqrt{y}-1}\left(y\ge0;y\ne1\right)\)
\(e.\sqrt{x+2+2\sqrt{x+1}}-\sqrt{x+2-2\sqrt{x+1}}\)
* Cho biểu thức
A= \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) với x > 0, x ≠ 1
a. Rút gọn biểu thức A
b. Tính giá trị của x khi A > \(\dfrac{1}{6}\)
Tìm \(x;y\in N\)tmãn : \(\sqrt{x}+\sqrt{y}=\sqrt{2012}\)
2, Rút gọn bt
\(P=\dfrac{x}{x-\sqrt{x}}+\dfrac{2}{x+2\sqrt{x}}+\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}\)
b, gpt : \(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)
3, cho x>1 ; y>0 , cm
\(\dfrac{1}{\left(x+1\right)^3}+\left(\dfrac{x-1}{y}\right)^3+\dfrac{1}{y^3}\ge3\left(\dfrac{3-2x}{x-1}+\dfrac{x}{y}\right)\)