\(\frac{1-cosx+cos2x}{sin2x-sinx}=\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}=\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\frac{cosx}{sinx}=cotx\)
\(\frac{1-cosx+cos2x}{sin2x-sinx}=\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}=\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\frac{cosx}{sinx}=cotx\)
rut gon
\(A=\frac{1-sinx-cos2x}{sin2x-cosx}\)
\(B=\frac{sin2x+sinx}{1+cos2x+cosx}\)
\(C=\frac{tana-cota}{tana+cota}+cos2a\)
CMR: sin2x/ cosx+ cos3x= sinx/ cos2x
1+cotx2/ 1-cotx2 + cosx/ cosx-sinx = sinx/ cosx+ sinx mọi người chứng minh giúp em
Gọi M = 1 + sin2x + cos2x thì:
A. M = 2cosx.(sinx - cosx)
B. M = cosx.(sinx + cosx)
C. M = \(\sqrt{2}\)cosx.cos(x - \(\frac{\pi}{4}\))
D. M = \(2\sqrt{2}\)cosx.cos(x - \(\frac{\pi}{4}\))
1. Cho sinx=-3/5 , x thuộc (-π/2 , 0) . Tính A= sinx + 6 cosx -3 tanx .
2. Cho cotx = 3 . Tính B=5sinx + 3cosx / 3cosx - 2sinx
3. Cho cosx=2/3 . Tính C= cotx-2tanx / 5cotx + tanx
4. Chứng minh ;
Cosx/ 1+ sinx +tanx = 1/ cosx
Chứng minh đẳng thức sau: Tanx/sinx - sinx/cotx = cosx
B=1+cosx/sinx[1 - (1-cosx)2 /sin2x]
(một cộng cốtx trên sinx nhân (một trừ cho [(1 trừ cosx)tất cả bình ] trên sin 'bình'x )
chứng minh đẳng thức lượng giác \(\frac{sin2x-cosx}{2sinx-1}\)+ sinx = \(\sqrt{2}\)sin(x+\(\frac{\text{π}}{4}\))
Bài 1 : Chứng minh rằng
a) \(\frac{1-sinx}{cosx}=\frac{cosx}{1+sinx}\)
b) \(\frac{tanx}{sinx}-\frac{sinx}{cotx}=cosx\)
Bài 2 : Chứng minh các biểu thức sau độc lập với biến x
A= \(\frac{cot^2x-cos^2x}{cot^2x}+\frac{sinxcosx}{cotx}\)
B= \(cos^4x+sin^2xcos^2x+sin^{2^{ }}x\)
Bài 3 : Tính giá trị các biểu thức lượng giác
A=\(\frac{5cosx+6tanx}{5cosx-6tanx}\) biết tanx=2
B= \(\frac{4sinxcosx-3cos^2x}{^{ }1+3sin^2x}\) biết cotx = -6
Bài 4 : Tính giá trị các biểu thức lượng giác
A= \(\frac{cotx}{cotx-tanx}\) biết sinx=\(\frac{3}{5}\) với \(0^o< x\le90^o\)
B= sina+cosa tana biết cosa=\(\frac{1}{2}\) với \(\frac{3\pi}{2}< a< 2\pi\)
Bài 5 : Tính giá trị lượng giác còn lại của góc 2a nếu :
a) cos2\(\alpha\) = \(\frac{2}{5}\) biết \(0< \alpha< \frac{\pi}{4}\)
b) sin2\(\alpha\) = \(\frac{24}{25}\) biết \(\frac{-3\pi}{4}\le\alpha\le-\frac{\pi}{2}\)