Aps dụng định lí pytago vào tam giác ta cÓ
BC=\(\sqrt{AB^2+AC^2}\) (1)
đặt AC=x ta có pt:
AB+AC+BC=1/2*AB*AC
<=> 40+x+\(\sqrt{x^2+40^2}\) =20x
<=>x\(\approx\)4,2
hayAC=4.2
theo(1) ta có BC=40
Aps dụng định lí pytago vào tam giác ta cÓ
BC=\(\sqrt{AB^2+AC^2}\) (1)
đặt AC=x ta có pt:
AB+AC+BC=1/2*AB*AC
<=> 40+x+\(\sqrt{x^2+40^2}\) =20x
<=>x\(\approx\)4,2
hayAC=4.2
theo(1) ta có BC=40
cho tam giác abc vuông tại a kẻ đường cao ah vẽ đuòng tròn đuòng kính ah đường tròn cắt ab tại e cắt ac tại F , gọi m là giao điểm của CE và BF . So sánh diện tích tứ giác AEMF và diện tích tam giác BMC
Cho tam giác ABC nhọn . AM và BN là hai đường cao của tam giác ( M thuộc BC , N thuộc AC ) a) chứng minh tứ giác ANMB nội tiếp đường tròn b) chứng minh góc AMN = góc ABN c) giả sử góc C = 30°. Tính số đo cung MN
Cho tam giác ABC vuông tại A(AB>AC) có đường cao AH (H thuộc BC).Trên nửa mp bờ BC chứa điểm A,vẽ nửa đường tròn(O1) đường kính BH cắt AB tại I (I khác B) và nửa đường tròn (O2) đường kính HC cắt AC tại K (K khác C).CM
a) Tứ giác BIKC là tứ giác nội tiếp
b) IK là tiếp tuyến chung của 2 nửa đtron (O1) và (O2)
Giúp mình với ạ,mình cảm ơn rất nhiềuuuuuu
Cho tam giác ABC vuông tại A, biết AB > AC, trên AB lấy điểm K ( K≠A và B). Vẽ đường tròn tâm O đường kính KB. Kẻ tia CK cắt đường tâm (O) tại H. BH cắt CA tại I a) chứng minh tứ giác AIHK và BHAC nội tiếp b) chứng minh IK vuông góc BC c) chứng minh IB.IH = IA.IC
Cho đường trong tâm O , đg kính bc . Lấy điểm A trên cung bc sao cho ab<ac . Trên oc lấy D từ D kẻ đg thẳng vuông góc với bc cắt ac tại e .
a, chứng minh abde là tứ giác nội tiếp
b, chứng minh góc dae bằng góc dbe
c, đường cao ah của tam giác abc cắt đg tròn tại f . Chứng minh hf.dc = hc.ed
cho tam giác ABC có 3 góc nhọn AB<AC. AD,BE,CF là các đường cao. EF giao với BC tại N.Đường thẳng D//EF và cắt AB,AC tại X,Y
a, chứng minh BCEF ,ACDF nội tiếp
b, EB là phân giác góc DEF và AX/AY bằng AC/AB
cho tam giác ABC vuông tại A ,điểm M nằm trên AB, vẽ dt <O, BM bằng 2r> CM cắt đường tròn tại D, AD cắt đường tròn tại E Chứng minh
a, tứ giác ACBD nội tiếp rồi suy ra 2 góc ABD và ACD bằng nhau
b, BA là phân giác góc EBC
c, cho BC bằng 4cm góc ABC bằng 30 độ tính diện tích hình viên giới hạn cung nhỏ AC và dây AC
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc với AB tại E, Kẻ HF vuông góc với AC tại F. Chứng minh tứ giác BEFC nội tiếp.