Câu 1:
\(\cos a=\sqrt{1-\left(\dfrac{1}{4}\right)^2}=\dfrac{\sqrt{15}}{4}\)
\(A=\sin^2a+3\cos^2a-1=\dfrac{1}{16}+3\cdot\dfrac{15}{16}-1=\dfrac{15}{8}\)
Câu 1:
\(\cos a=\sqrt{1-\left(\dfrac{1}{4}\right)^2}=\dfrac{\sqrt{15}}{4}\)
\(A=\sin^2a+3\cos^2a-1=\dfrac{1}{16}+3\cdot\dfrac{15}{16}-1=\dfrac{15}{8}\)
Bài 1: không dùng bảng số, máy tính bỏ túi hãy tính giá trị của các biểu thức
a, M=sin242 + sin243 + sin244 + sin245 + sin246 + sin247 + sin248
b, cos215 - cos225 + cos235 - cos245 + cos255 - cos265 + cos275
Bài 2: chứng minh rằng
a, (1- cosa)/sina=sina/(1+cosa)
b, tan2a - sin2a = tan2a.sin2a
Bài 3 cho
sinx + cosx = căn2
Chứng minh rằng sinx = cosx. Tìm x
a)Chứng minh 1+tan2α = \(\dfrac{1}{cos^2a}\)
b)Áp dụng câu a tính sin a,cos a biết tan a =\(\dfrac{3}{5}\)
Nghiệm X của pt sau đc viết dưới dạng phân số A/B.Khi đó B=?\(\dfrac{1}{x+\dfrac{2}{3+\dfrac{4}{5+\dfrac{6}{7+\dfrac{8}{9+\dfrac{10}{11}}}}}}=\dfrac{1}{1-\dfrac{x}{2+\dfrac{1}{3+\dfrac{1}{4+\dfrac{1}{5+\dfrac{1}{6}}}}}}\)
Cho DABC vuông tại A có AH ^ BC. Cho AB = 6cm, AC = 8cm. Gọi M là trung điểm HC
a) Tính BC, AH và góc AMH?
b) Không tính, hãy chứng minh tan góc AMH = 2 tan . C
Cho tam giác ABC vuông tại A có AH vuuong gócvới BC. Cho AB = 6cm, AC = 8cm. Gọi M là trung điểm HC
a) Tính BC, AH và góc AMH?
b) Không tính, hãy chứng minh tan góc AMH = 2 tan . C
chứng minh các tslg sau
a) tan α = \(\dfrac{sin a}{cos a}\)
b)cot a = \(\dfrac{cos a}{sin a}\)
c)tan a . cot a = 1
cho tam giác ABC vuông tại A có đường cao AD,AB=a và AC=a\(\sqrt{2}\)
a) Giải tam giác ABC(độ dài cạnh tính theo a và số đo góc làm tròn đến phút)
b) Gọi M là trung điểm BC,N là trung điểm AC và E là giao điểm AM và BN.Chứng minh AM⊥BN tại E
c) Chứng minh \(\widehat{BND}\)=\(\widehat{BCE}\)
Chứng minh sin\(\dfrac{A}{2}< =\dfrac{BC}{AC+AB}\)
cho △ABC có góc A = 90o . Chứng minh :tan\(\dfrac{gócC}{2}\)=\(\dfrac{AB}{AB+AC}\)