Phương trình hoành độ giao điểm: \(ax^2-bx-c=0\)
\(a.\left(-c\right)=-ac< 0\Rightarrow\) pt luôn có 2 nghiệm pb hay (d) luôn cắt (P) tại 2 điểm phân biệt
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{b}{a}\\x_1x_2=-\frac{c}{a}\end{matrix}\right.\)
\(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\frac{b^2}{a^2}+\frac{2c}{a}=\frac{b^2+2ac}{a^2}\)
\(P=\frac{a^2-c^2+2ac}{a^2}=\frac{2a^2-\left(a^2-2ac+c^2\right)}{a^2}=2-\left(\frac{a-c}{a}\right)^2< 2\)