Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hello hello

1. cho hai đa thức

f(x)=\(-5x^5-x^5+2x^4-x^2-1\)

g(x)= \(-6+2x-2x^3-x^4+3x^5\)

tính giá trị của h(x) = f(x)-g(x) và q(x)=g(x)-f(x) tại x=-1, x=1, x=2, x=-2

Akai Haruma
29 tháng 3 2019 lúc 17:08

Lời giải:

Ta có:
\(h(x)=f(x)-g(x)=(-5x^5-x^5+2x^4-x^2-1)-(-6+2x-2x^3-x^4+3x^5)\)

\(=(-5x^5-x^5-3x^5)+(2x^4+x^4)+2x^3-x^2-2x+(-1+6)\)

\(=-9x^5+3x^4+2x^3-x^2-2x+5\)

\(\Rightarrow \left\{\begin{matrix} h(-1)=-9(-1)^5+3(-1)^4+2(-1)^3-(-1)^2-2(-1)+5=16\\ h(1)=-9.1^5+3.1^4+2.1^3-1^2-2.1+5=-2\\ h(-2)=-9(-2)^5+3(-2)^4+2(-2)^3-(-2)^2-2(-2)+5=325\\ h(2)=-9.2^5+3.2^4+2.2^3-2^2-2.2+5=-227\end{matrix}\right.\)

\(q(x)=g(x)-f(x)=-[f(x)-g(x)]=-h(x)\)

\(\Rightarrow q(-1)=-h(-1)=-16\)

\(q(1)=-h(1)=2\)

\(q(-2)=-h(-2)=-325\)

\(q(2)=-h(2)=227\)