Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hải Băng

1. Cho góc xOy khác góc bẹt. Lấy A, B thuộc Ox sao cho OA < OB. Lấy C, D thuộc Oy sao cho OC = OA; OD = OA. Gọi E là giao điểm của AD và BE. CMR:

a, AD = BC

b, Tam giác AMD = tam giác ECD

c, OE là tia phân giác của góc Oy

 

Trương Hồng Hạnh
20 tháng 11 2016 lúc 10:03

Chép lại đề: (vì đề của bạn có chút sai sót)

Cho \(\widehat{xOy}\) khác góc bẹt. Lấy A, B thuộc Ox sao cho OA < OB. Lấy C, D thuộc Oy sao cho OC = OA; OD = OB. Gọi E là giao điểm của AD và BC. CMR:

a, AD = BC

b, Tam giác AEB = tam giác CED

c, OE là tia phân giác của \(\widehat{xOy}\)

Ta có hình vẽ:

a/ Xét tam giác OAD và tam giác OBC có

OA = OC (GT)

\(\widehat{O}\): góc chung

OB = OD (GT)

Vậy tam giác OAD = tam giác OBC (c.g.c)

=> AD = BC (2 cạnh tương ứng) (đpcm)

b/ Xét tam giác AEB và tam giác CED có:

\(\widehat{B}\)=\(\widehat{D}\) (vì tam giác OAD = tam giác OBC) (1)

OA = OC; OB = OD => AB = CD (2)

Ta có: \(\Delta\)OAD = \(\Delta\)OBC

=> \(\widehat{OAD}\)=\(\widehat{OCB}\) (2 góc tương ứng) (*)

Ta có: \(\widehat{OAD}\)+\(\widehat{DAB}\)=1800 (kề bù) (**)

\(\widehat{OCB}\) + \(\widehat{BCD}\) = 1800 (kề bù) (***)

Từ (*), (**), (***) \(\Rightarrow\)\(\widehat{DAB}\)=\(\widehat{BCD}\)(3)

Từ (1), (2), (3) => tam giác AEB = tam giác CED (g.c.g) (đpcm)

c/ Xét tam giác OBE và tam giác ODE có:

OB = OD (GT)

OE: cạnh chung

BE = EC (vì tam giác AEB = tam giác CED)

Vậy tam giác OBE = tam giác ODE (c.c.c)

=> \(\widehat{BOE}\)=\(\widehat{DOE}\) (2 góc tương ứng)

=> OE là phân giác góc xOy (đpcm)

Vậy OE là tia phân giác \(\widehat{xOy}\)


Các câu hỏi tương tự
Nguyễn Hải Băng
Xem chi tiết
Tử Đằng
Xem chi tiết
Hà Thu Nguyễn
Xem chi tiết
Jeon Jungkook Bangtan
Xem chi tiết
Jung Yoon Do
Xem chi tiết
Tiến Đạt
Xem chi tiết
Hà Thu Nguyễn
Xem chi tiết
Thiên thần chính nghĩa
Xem chi tiết
Bánh Trôi
Xem chi tiết