Chép lại đề: (vì đề của bạn có chút sai sót)
Cho \(\widehat{xOy}\) khác góc bẹt. Lấy A, B thuộc Ox sao cho OA < OB. Lấy C, D thuộc Oy sao cho OC = OA; OD = OB. Gọi E là giao điểm của AD và BC. CMR:
a, AD = BC
b, Tam giác AEB = tam giác CED
c, OE là tia phân giác của \(\widehat{xOy}\)
Ta có hình vẽ:
a/ Xét tam giác OAD và tam giác OBC có
OA = OC (GT)
\(\widehat{O}\): góc chung
OB = OD (GT)
Vậy tam giác OAD = tam giác OBC (c.g.c)
=> AD = BC (2 cạnh tương ứng) (đpcm)
b/ Xét tam giác AEB và tam giác CED có:
\(\widehat{B}\)=\(\widehat{D}\) (vì tam giác OAD = tam giác OBC) (1)
OA = OC; OB = OD => AB = CD (2)
Ta có: \(\Delta\)OAD = \(\Delta\)OBC
=> \(\widehat{OAD}\)=\(\widehat{OCB}\) (2 góc tương ứng) (*)
Ta có: \(\widehat{OAD}\)+\(\widehat{DAB}\)=1800 (kề bù) (**)
\(\widehat{OCB}\) + \(\widehat{BCD}\) = 1800 (kề bù) (***)
Từ (*), (**), (***) \(\Rightarrow\)\(\widehat{DAB}\)=\(\widehat{BCD}\)(3)
Từ (1), (2), (3) => tam giác AEB = tam giác CED (g.c.g) (đpcm)
c/ Xét tam giác OBE và tam giác ODE có:
OB = OD (GT)
OE: cạnh chung
BE = EC (vì tam giác AEB = tam giác CED)
Vậy tam giác OBE = tam giác ODE (c.c.c)
=> \(\widehat{BOE}\)=\(\widehat{DOE}\) (2 góc tương ứng)
=> OE là phân giác góc xOy (đpcm)
Vậy OE là tia phân giác \(\widehat{xOy}\)