Giả sử a+b>2
=>\(a^3+b^3+3ab\left(a+b\right)>\left(a+b\right)^3=2^3=8\)
=>\(2+3ab\left(a+b\right)>8\)
=>\(3ab\left(a+b\right)>6\)
=>\(ab\left(a+b\right)>2\)
=>\(ab\left(a+b\right)>a^3+b^3\)
=>\(0>a^3+b^3-ab\left(a+b\right)\)
=>\(0>\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\)
=>\(0>\left(a+b\right)\left(a^2-2ab+b^2\right)\)
=>\(0>\left(a+b\right)\left(a-b\right)^2\)
Vì a+b>2 (điều đã giả sử) và (a-b)2\(\ge0\) <=>\(\left(a+b\right)\left(a-b\right)^2\ge0\)
=>\(0>\left(a+b\right)\left(a-b\right)^2\) là vô lý
=>\(a+b\le2\)
Ta có đpcm