Áp dụng BĐT Cauchy :
\(\dfrac{ab^2}{a^2+b^2}\le\dfrac{ab^2}{2ab}=\dfrac{b}{2}\)\(\Leftrightarrow a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{b}{2}\)
\(\Leftrightarrow\dfrac{a^3}{a^2+b^2}\ge a-\dfrac{b}{2}\)
Tương tự : \(\dfrac{b^3}{b^2+c^2}\ge b-\dfrac{c}{2}\) ; \(\dfrac{c^3}{c^2+a^2}\ge c-\dfrac{a}{2}\)
Cộng ba BĐT lại theo vế theo vế
\(\Rightarrow\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\ge\left(a+b+c\right)-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}\)