a)
Từ phương trình (1) ⇔ y = 3x - 5 (3)
Thế (3) vào phương trình (2): 5x + 2(3x - 5) = 23
⇔ 5x + 6x - 10 = 23 ⇔ 11x = 33 ⇔x = 3
Từ đó y = 3 . 3 - 5 = 4.
Vậy hệ có nghiệm (x; y) = (3; 4).
b)
Từ phương trình (2) ⇔ y = 3x + 8 (3)
Thế (3) vào (1): 3x + 5(2x + 8) = 1 ⇔ 3x + 10x + 40 = 1 ⇔ 13x = -39
⇔ x = -3
Từ đó y = 2(-3) + 8 = 2.
Vậy hệ có nghiệm (x; y) = (-3; 2).
c)
Phương trình (1) ⇔ x = y (3)
Thế (3) vào (2): y + y = 10 ⇔ y = 10
⇔ y = 6.
Từ đó x = . 6 = 4.
Vậy nghiệm của hệ là (x; y) = (4; 6).
a, ta có \(\left\{{}\begin{matrix}3x-y=5\\5x+2y=23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-5+3x\\5x+2\left(-5+3x\right)=23\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=3x-5\\11x=33\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3.3-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
vậy hệ PT đã cho có 1 nghiệm duy nhất (x;y)=(3;4)
b, ta có \(\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=8+2x\\3x+5\left(8+2x\right)=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=8+2x\\13x=-39\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=8+2.\left(-3\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)
vậy hệ PT đã cho có 1 nghiệm duy nhất (x;y)=(-3;2)
c,ta có \(\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{2}{3}\\x+y-10=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=10-y\\3\left(10-y\right)=2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=10-y\\-5y=-30\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=10-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)
vậy hệ PT đã cho có 1 nghiệm duy nhất là (x;y)=(4;6)
\(\left\{{}\begin{cases}3x-y=5\\5x+2y=23\end{cases}}\)
Không hiểu bị gì nữa ???
\(\Leftrightarrow\) \(\left\{{}\begin{cases}y=3x-5\\5x+2\left(3x+5\right)=23\end{cases}}\)
\(\Leftrightarrow\)\(\left\{{}\begin{cases}y=3x-5\\5x+6x-10=23\end{cases}}\)
\(\Leftrightarrow\) \(\hept{\begin{cases}\\\end{cases}}\)