Ta có: \(\widehat{AOC}=\widehat{AOB}+\widehat{BOC}=50^0+80^0=130^0\)
D,O,C thẳng hàng \(\Rightarrow\widehat{AOD}+\widehat{AOC}=180^0\)
\(\Rightarrow\widehat{AOD}=180^0-\widehat{AOC}=180^0-130^0=50^0\)
Ta có: \(\widehat{BOD}+\widehat{BOC}=180^0\) (2 góc kề bù)
\(\Rightarrow\widehat{BOD}=180^0-\widehat{BOC}=180^0-80^0=100^0\)
Ta có: \(\left\{{}\begin{matrix}OA.nằm.trên.nửa.mặt.phẳng.bờ.OD.chứa.B\\\widehat{AOD}< \widehat{BOD}\left(50^0< 100^0\right)\end{matrix}\right.\)
=> OA nằm giữa OB và OD.