Tồn tại duy nhất một giá trị m để bất phương trình \(x^2\le2mx-m^2+m-3\) có tập nghiệm \(S=\left[x_1;x_2\right]\) thỏa mãn điều kiện \(\sqrt{x^2_1+2mx_2+m^2-m+3}=\left|m-9\right|\). Tìm m
Ký hiệu S là tập hợp nghiệm của bất phương trình \(x^2-\left(8m+1\right)x+15m^2+3m\le0\). Tìm điều kiện của m để khi biểu diễn trên trục số, độ dài của S lớn hơn 3
Tồn tại các giá trị của \(a\) và \(b\) để \(\left(a-2b+1\right)x+a^2-3b+2>0\), \(\forall x\in R\), Khi đó điều kiện của tham số \(b\) là?
1) a) \(^{x^2}\)-2(m-1)x+ \(m^2\)-3m=0 có 2 nghiệm phân biệt x1, x2 thỏa mãn: \(x1^2+x2^2\)≤8
b) Phương trình \(x^2\)-mx+m-1=0 có hai nghiệm phân biệt x1, x2 thỏa điều kiện \(x1^2+x2^2\)-(x1+x2)≤12 khi m thuộc ?
2) Cho phương trình \(x^2\)-2mx+2m-1=0. Định m để phương trình có 2 nghiệm x1, x2 thỏa điều kiện: \(\left(x1+x2\right)^2\)-x1x2 ≥1
3) Tìm giá trị của tham số m sao cho phương trình: \(x^2\)+2(m+1)x+\(m^2\)+1=0 có 2 nghiệm phân biệt x1,x2 thỏa mãn x1+x2-x1x2= -6
4) Tìm m để bpt :(m+1)\(x^2\)+4mx-3m-5 lớn hơn 0 với mọi m
Cho bốn số a,b,c,d thỏa mãn điều kiện a ²+b ²=4a+6b-9 và 3c+4d=1. Tìm giá trị nhỏ nhất của biểu thức P=(a-c) ²+(b-d) ²
cho hai số x,y thỏa mãn x2 + y2 =1 + xy , gọi M và m lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của P = x4 + y4 -x2y2 , tính tích Mm
Hệ bất phương trình \(\left\{{}\begin{matrix}x^2-5x+4\le0\\x^2-\left(m^2+3\right)x+2\left(m^2+1\right)\le0\end{matrix}\right.\) có tập nghiệm biểu diễn trên trục số có độ dài bằng 1, với giá trị của m bằng ?
Câu 1: Giải và biện luận bất phương trình \(m^2x+m\ge2-4x\)
Câu 2: Tìm giá trị thực của tham số m để bất phương trình \(m\left(2x-1\right)\ge2x-1\) có tập nghiệm là \([1;+\infty)\)
Cho bất phương trình \(\left|x^2+x+a\right|+\left|x^2-x+a\right|\le2x\left(1\right)\) Khi đó khẳng định nào sau đây đúng nhất?
A. (1) có nghiệm khi \(a\le\dfrac{1}{4}\)
B. Mọi nghiện của (1) đều không âm.
C. (1) có nghiệm lớn hơn 1 khi a<0
D. Tất cả đều đúng
(làm theo hình thức tự luận)