A = \(\left(\frac{1+x\sqrt{x}}{x-1}+1\right)\left(1-\frac{1}{\sqrt{x}}\right)\)
ĐKXĐ : x > 1
= \(\left(\frac{1+x\sqrt{x}+x-1}{x-1}\right).\frac{\sqrt{x}-1}{\sqrt{x}}\)
= \(\frac{x\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}.\left(x-1\right)}\)
= \(\sqrt{x}\)
Ta có :
x = 4 \(-2\sqrt{3}\)
<=> x = 3 - 2 \(\sqrt{3}\) +1
<=> x = ( \(\sqrt{3}-1\) )2
=> A= \(\sqrt{x}\)
= \(\sqrt{\left(\sqrt{3}-1\right)^2}\)
= \(\left|\sqrt{3}-1\right|\)