Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Trân

1)

a) So sánh (-99)20 và 9999100

b) Chứng tỏ A = 2720 + 361 + 931 chia hết cho 13

2)

Cho\(\dfrac{a}{b}\)= \(\dfrac{b}{c}\)=\(\dfrac{c}{2011}\) =\(\dfrac{2011}{a}\) và a+b+c khác 0. Tính a+b-c

3) Tính M = \(\dfrac{4}{237}-\dfrac{4}{2371}+\dfrac{4}{23711}\) phần \(\dfrac{-5}{237}+\dfrac{5}{2371}-\dfrac{5}{23711}\)

Mới vô
24 tháng 7 2017 lúc 9:53

3,

\(M=\dfrac{\dfrac{4}{237}-\dfrac{4}{2371}+\dfrac{4}{23711}}{\dfrac{-5}{237}+\dfrac{5}{2371}-\dfrac{5}{23711}}=\dfrac{\left(-4\right)\cdot\left(\dfrac{-1}{237}+\dfrac{1}{2371}-\dfrac{1}{23711}\right)}{5\cdot\left(\dfrac{-1}{237}+\dfrac{1}{2371}-\dfrac{1}{23711}\right)}=\dfrac{-4}{5}\)

Vậy \(M=\dfrac{-4}{5}\)

2,

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2011}=\dfrac{2011}{a}=\dfrac{a+b+c+2011}{b+c+2011+a}=\dfrac{a+b+c+2011}{a+b+c+2011}=1\)

\(\dfrac{a}{b}=1\Rightarrow a=b\left(1\right)\\ \dfrac{b}{c}=1\Rightarrow b=c\left(2\right)\)

Từ (1) và (2) ta có: \(a=c\)

\(\Rightarrow a+b-c=a+a-a=a\)

1)

b)

\(A=27^{20}+3^{61}+9^{31}\\ =\left(3^3\right)^{20}+3^{61}+\left(3^2\right)^{31}\\ =3^{60}+3^{61}+3^{62}\\ =3^{60}\cdot\left(1+3+3^2\right)\\ =3^{60}\cdot\left(1+3+9\right)\\ =3^{60}\cdot13⋮13\)

Vậy \(A⋮13\)

a,

\(\left(-99\right)^{20}=\left(-99\right)^{2\cdot10}=\left[\left(-99\right)^2\right]^{10}=9801^{10}\\ 9999^{100}=\left(9999^{10}\right)^{10}>\left(9999^{10}\right)^1=9999^{10}\)

\(9801^{10}< 9999^{10}< \left(9999^{10}\right)^{10}=9999^{100}\Rightarrow\left(-99\right)^{20}< 9999^{100}\)

Vậy \(\left(-99\right)^{20}< 9999^{100}\)

Huy Thắng Nguyễn
24 tháng 7 2017 lúc 10:00

1/

a) (-99)20 = 9920

Vì 99 < 9999

20 < 100

Nên 9920 < 9999100

Vậy (-99)20 < 9999100

b) \(A=27^{20}+3^{61}+9^{31}\)

\(=\left(3^3\right)^{20}+3^{61}+\left(3^2\right)^{31}\)

\(=3^{60}+3^{61}+3^{62}\)

\(=3^{60}\left(1+3+3^2\right)\)

\(=3^{60}.13⋮13\)

Vậy A chia hết cho 13.

2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2011}=\dfrac{2011}{a}=\dfrac{a+b+c+2011}{b+c+2011+a}=1\)

\(\Rightarrow\dfrac{a}{b}=1;\dfrac{b}{c}=1\Rightarrow a=b=c\) (*)

Thay (*) vào a + b - c: a + a - a = a

Vậy a + b - c = a.

3. \(M=\dfrac{\dfrac{4}{237}-\dfrac{4}{2371}+\dfrac{4}{23711}}{-\dfrac{5}{237}+\dfrac{5}{2371}-\dfrac{5}{23711}}\)

\(=\dfrac{4\left(\dfrac{1}{237}-\dfrac{1}{2371}+\dfrac{1}{23711}\right)}{-5\left(\dfrac{1}{237}-\dfrac{1}{2371}+\dfrac{1}{23711}\right)}\)

\(=-\dfrac{4}{5}\)


Các câu hỏi tương tự
ĐỨC TRỌNG
Xem chi tiết
Dinh Thi Hai Ha
Xem chi tiết
PhươngAnh Lê
Xem chi tiết
Bảo Nguyễn
Xem chi tiết
ngọc ánh 2k8
Xem chi tiết
fire phonenix
Xem chi tiết
Hằng Đoàn
Xem chi tiết
sakura
Xem chi tiết
hoang thuy an
Xem chi tiết