đùa à bất kì số thập phân hữu hạn nào luỹ thừa lên cũng = 0 nên nó rất dễ giải:
a) \(\left[0,\left(3\right)\right]^2-\dfrac{81}{82}+2\)
= \(0-\dfrac{81}{82}+2\)
= \(\left(0+2\right)-\dfrac{81}{82}\)
= \(2-\dfrac{81}{82}\)
= \(\dfrac{83}{82}\)
b) \(3-\dfrac{1}{49}+\left[0,\left(142857\right)\right]^2\)
= \(3-\dfrac{1}{49}+0\)
= \(\left(3+0\right)-\dfrac{1}{49}\)
= \(3-\dfrac{1}{49}\)
= \(\dfrac{146}{49}\)
mình rút gọn luôn đó nhe
a)
\(\left[0,\left(3\right)\right]^2-\dfrac{81}{82}+2\\ =\dfrac{1}{9}-\dfrac{81}{82}+2\\ =\dfrac{82}{738}-\dfrac{729}{738}+\dfrac{1479}{738}\\ =\dfrac{82-729+1479}{738}\\ =\dfrac{832}{738}\\ \approx1,13\)
b)
\(3-\dfrac{1}{49}+\dfrac{1}{7}\\ =\dfrac{147}{49}-\dfrac{1}{49}+\dfrac{7}{49}\\ =\dfrac{147-1+7}{49}\\ =\dfrac{153}{49}\\ \approx3,12\)