Lời giải:
Hệ số của $x^5$ trong khai triển $Q(x)$ là hệ số của $x^2$ trong khai triển $(1+2x)^5$. Hệ số này bằng:
\(C^2_5.2^2=40\)
Lời giải:
Hệ số của $x^5$ trong khai triển $Q(x)$ là hệ số của $x^2$ trong khai triển $(1+2x)^5$. Hệ số này bằng:
\(C^2_5.2^2=40\)
Số hạng không chứa x trong khai triển (3x+1/x^4) 15.
Xét khai triển (1+x)(1+2x)(1+3x)....(1+2019x) = a0 + a1x + a2x2 + a3x3 +...+ a2019x2019. Tính S = 2a2 + (11 + 22 +...+ 20192)
1. Tìm hệ số của số hạng \(x^4\) trong khai triển \(\left(x-3\right)^9\)
2. Tìm hệ số của số hạng chứa \(x^{12}y^{13}\) trong khai triển \(\left(2x+3y\right)^{25}\)
3. Tìm hệ số của số hạng chứa \(x^4\) trong khai triển \(\left(\dfrac{x}{3}-\dfrac{3}{x}\right)^{12}\)
4. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x}\right)^6\)
5. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x+\dfrac{1}{x^4}\right)^{10}\)
Các bạn giúp mình khai triển chi tiết biểu thức (a+ b)n theo nhị thức niuton đi.
Để cụ thể hơn các bạn vui lòng khai triển chi tiết biểu thức \(\left(\sqrt{3}+\sqrt[3]{30}\right)^6\) (tính ra kết quả hộ mình luôn nha) theo nhị thức niuton hộ mình nha
khai triển (3x+1)10 cho tới x3
tổng các hệ số nhị thức niuton trong khai triển \(\left(2nx+\frac{1}{2nx^2}\right)^{3n}\) bằng 64 . số hạng không chứa x trong khai triển là bao nhiêu ?
Giải giúp mình bài toán này với: Tìm n sao cho: \(C_n^2 C_n^{n-2} + 2C_n^2 C_n^3 + C_n^3 C_n^{n-3} = 100\)