f: \(2\sqrt{98}-\dfrac{2}{3}\sqrt{18}\)
\(=2\cdot7\sqrt{2}-\dfrac{2}{3}\cdot3\sqrt{2}\)
\(=12\sqrt{2}\)
h: \(\sqrt{3}\cdot\sqrt{12}-\dfrac{\sqrt{18}}{\sqrt{2}}\)
=6-3
=3
\(f.2\sqrt{7^2.2}-\dfrac{2}{3}\sqrt{3^2.2}=14\sqrt{2}-2\sqrt{2}=12\sqrt{2}\)
\(g.\sqrt{10}-3-\sqrt{10}=-3\)
\(2\sqrt{98}-\dfrac{2}{3}\sqrt{18}=14\sqrt{2}-2\sqrt{2}=12\sqrt{2}\)
\(\sqrt{\left(3-\sqrt{10}\right)^2}-\sqrt{10}=\left|3-\sqrt{10}\right|-\sqrt{10}=\sqrt{10}-3-\sqrt{10}=-3\)
\(\sqrt{3}.\sqrt{12}-\dfrac{\sqrt{18}}{\sqrt{2}}=\sqrt{3.12}-\sqrt{\dfrac{18}{2}}=\sqrt{36}-\sqrt{9}=6-3=3\)
\(\sqrt{5}.\sqrt{125a^2}-\dfrac{\sqrt{48a^3}}{\sqrt{3a}}=\sqrt{5.125a^2}-\sqrt{\dfrac{48a^3}{3a}=\sqrt{\left(625a\right)^2}-\sqrt{\left(4a\right)^2}=625a-4a}\)