\(1+cosx+cos2x+cos3x=0\\ \Leftrightarrow\left(1+cos2x\right)+\left(cosx+cos3x\right)=0\\ \Leftrightarrow2cos^2x+2cos2x.cosx=0\\ \Leftrightarrow2cosx\left(cosx+2cos2x\right)=0\\ \Leftrightarrow4cosx.cos\dfrac{3x}{2}.cos\dfrac{x}{2}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\k\in Z\\x=\dfrac{\pi}{3}+k\dfrac{\pi}{3}\end{matrix}\right.\)