\(sin\left(2x+\dfrac{\pi}{4}\right)=1\)
\(\Leftrightarrow2x+\dfrac{\pi}{4}=\dfrac{\pi}{2}+k2\pi\left(k\in Z\right)\)
\(\Leftrightarrow x=\dfrac{\pi}{8}+k\pi\left(k\in Z\right)\)
\(x\in\left(0,2\pi\right)\)
\(S=\left\{\dfrac{\pi}{8},\dfrac{9\pi}{8}\right\}\)
\(cosx=sinx\)
\(\Leftrightarrow sinx-cosx=0\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=0\)
\(\Leftrightarrow x-\dfrac{\pi}{4}=k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)
Vì : \(x\in\left(\dfrac{-\pi}{2},\dfrac{\pi}{2}\right)\)
\(S=\left\{\dfrac{\pi}{4}\right\}\)