HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho hình trụ có bán kính đáy là R, độ dài đường cao là h. Đường kính MN của đáy dưới vuông góc với đường kính PQ của đáy trên. Thể tích của khối tứ diện MNPQ bằng
A. 2 3 R 2 h
B. 1 6 R 2 h
C. 1 3 R 2 h
D. 2 R 2 h
Cắt một hình nón bằng một mặt phẳng đi qua trục của nó ta được thiết diện là một tam giác vuông cân có cạnh huyến bằng a, diện tích xung quanh của hình nón đó là:
Cho khối chóp S.ABCD có đáy ABCD là hình vuông. Biết S A ⊥ ( A B C D ) và S B 2 = S C 3 = a Tính thể tích khối chóp S.ABCD
A. a 3 2
B. a 3 3
C. a 3 6
D. a 3 12
GIẢI:
a) Xét Δ ABC và Δ AED, ta có :
(đối đỉnh)
AB = AD (gt)
AC = AD (gt)
=> Δ ABC = Δ AED (hai cạnh góc vuông)
=> BC = DE
Xét Δ ABD, ta có :
(Δ ABC vuông tại A)
=> AD AE
=>
=> Δ ABD vuông tại A.
mà : AB = AD (gt)
=> Δ ABD vuông cân tại A.
cmtt :
mà : ở vị trí so le trong
=> BD // CE
b) Xét Δ MNC, ta có :
NK MC = > NK là đường cao thứ 1.
MH NC = > MH là đường cao thứ 2.
NK cắt MH tại A.
=> A là trực tâm. = > CA là đường cao thứ 3.
=> MN AC tại I.
mà : AB AC
=> MN // AB.
c) Xét Δ AMC, ta có :
(Δ ABC = Δ AED)
=> (cùng phụ góc ABC)
=> Δ AMC cân tại M
=> AM = ME (1)
Xét Δ AMI và Δ DMI, ta có :
(MN AC tại I)
IM cạnh chung.
mặt khác : (so le trong)
(đồng vị)
mà : (cmt)
=> Δ AMI = Δ DMI (góc nhọn – cạnh góc vuông)
=> MA = MD (2)
từ (1) và (2), suy ta : MA = ME = MD
ta lại có : ME = MD = DE/2 (D, M, E thẳng hàng)
=>MA = DE/2.
đêm . sao sáng là cậu đặc biệt