Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 14
Số lượng câu trả lời 206
Điểm GP 20
Điểm SP 209

Người theo dõi (4)

Jackson Williams
Lựu Ngô
Haruno Serry

Đang theo dõi (0)


Câu trả lời:

Let's solve each equation step by step:

√(x^2 - 6x + 9) = 3 - x

Squaring both sides of the equation, we get:
x^2 - 6x + 9 = (3 - x)^2
x^2 - 6x + 9 = 9 - 6x + x^2

The x^2 terms cancel out, and we are left with:
-6x = -6x

This equation is true for any value of x. Therefore, there are infinitely many solutions.

x^2 - (1/2)x + 1/16 = x + 3/2

Moving all terms to one side of the equation, we get:
x^2 - (1/2)x - x + 3/2 - 1/16 = 0
x^2 - (3/2)x + 29/16 = 0

To solve this quadratic equation, we can use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)

In this case, a = 1, b = -3/2, and c = 29/16. Plugging in these values, we get:
x = (3/2 ± √((-3/2)^2 - 4(1)(29/16))) / (2(1))
x = (3/2 ± √(9/4 - 29/4)) / 2
x = (3/2 ± √(-20/4)) / 2
x = (3/2 ± √(-5)) / 2

Since the square root of a negative number is not a real number, this equation has no real solutions.

√(x - 2)√(x - 1) = √(x - 1) - 1

Squaring both sides of the equation, we get:
(x - 2)(x - 1) = (x - 1) - 2√(x - 1) + 1
x^2 - 3x + 2 = x - 1 - 2√(x - 1) + 1
x^2 - 4x + 2 = -2√(x - 1)

Squaring both sides again, we get:
(x^2 - 4x + 2)^2 = (-2√(x - 1))^2
x^4 - 8x^3 + 20x^2 - 16x + 4 = 4(x - 1)
x^4 - 8x^3 + 20x^2 - 16x + 4 = 4x - 4

Rearranging terms, we have:
x^4 - 8x^3 + 20x^2 - 20x + 8 = 0

This equation does not have a simple solution and requires further calculations or approximation methods to find the solutions.

√9 - 4√5 - √5 = -2

Simplifying the left side of the equation, we get:
3 - 4√5 - √5 = -2
-√5 - 5 = -2
-√5 = 3

This equation is not true since the square root of a number cannot be negative.

Therefore, the given equations either have infinitely many solutions or no real solutions.

  

Câu trả lời:

a) Để tính bán kính hình tròn tâm O, ta có thể sử dụng định lý Pytago trong tam giác vuông AOB:
AB^2 + OB^2 = AO^2
Vì AB là cạnh của hình vuông và bằng 5cm, nên AB^2 = 5^2 = 25cm^2.
Vì O là tâm của hình tròn, nên OB là bán kính của hình tròn.
Vậy, ta có: 25 + OB^2 = AO^2

Vì tam giác AOB là tam giác vuông, nên ta có thể sử dụng định lý Pytago trong tam giác vuông AOC:
AC^2 = AO^2 + OC^2

Vì AC là đường chéo của hình vuông và bằng cạnh hình vuông nhân căn 2, nên AC = 5√2 cm.
Vì OC là bán kính của hình tròn, nên ta có: AC^2 = AO^2 + OC^2

Kết hợp hai phương trình trên, ta có hệ phương trình:
25 + OB^2 = AO^2
AC^2 = AO^2 + OC^2

Thay giá trị vào, ta có:
25 + OB^2 = AO^2
(5√2)^2 = AO^2 + OC^2
50 = AO^2 + OC^2

Do đó, ta có thể giải hệ phương trình để tính được giá trị của OB (bán kính hình tròn) và OC (đường cao của tam giác vuông AOC).

b) Để tính diện tích phần gạch chéo, ta cần biết độ dài của đường chéo và biết rằng đường chéo chia hình vuông thành hai tam giác vuông cân. Vì đường chéo là cạnh của hình vuông, nên độ dài đường chéo là 5cm.

Diện tích phần gạch chéo sẽ bằng tổng diện tích hai tam giác vuông cân. Với cạnh của hình vuông là 5cm, ta có thể tính diện tích một tam giác vuông cân bằng công thức: diện tích = (cạnh)^2 / 2.

Vậy diện tích phần gạch chéo sẽ là: 2 * [(5^2) / 2] = 25 cm^2.

15:31