cho tam giác ABC có 3 góc nhọn nội tiếp đtròn tâm O. Vẽ các đường cao BE, CF cắt nhau tại H. Kẻ đường kính BK của (O). chứng minh rằng:
a. BCEF là tứ giác nội tiếp.
b. AHCK là hình bình hành.
c. Đường tròn đường kính AC cắt BE ở M. Đường tròn đường kính AB cắt CF ở N. Chứng minh AM = AN
cho đtròn tâm O, đường kính AB=2R. lấy điểm c trên đtròn. Trên cùng 1 nửa mặt phẳng bờ AB chứa điểm C dựng 2 tia Ax và By cùng vuông góc với AB. Qua điểm C dựng tiếp tuyến với đtròn cắt tia Ax và By lần lượt tại M và N.
a.cm 4 điểm M, C, O, A cùng nằm trên 1 đtròn
b. cm góc CMO bằng góc CAO.
c. cm BC.MN=2R.ON
(gợi ý;: cm 2 tam giác vuông đồng dạng , 2R là đường kính của đtròn.)
d. khi AM = \(R\sqrt{3}\) hãy tính tỉ số diện tích của tm giác ACB và tam giác MON.
cho đtròn o và 1 dây AB khác đường kính, từ O kẻ OH vuông góc với AB tại H, tiếp tuyến tại A của đtròn cắt OH tại M; kẻ đường kính Bc, qua M kẻ đường thẳng vuông góc với MO, cắt CA ở N. Chứng minh:
a. MA2=MH.MO
b. cm AHMN là hcn và CH vuông góc vuông góc với NB.
c.MO cắt đtròn tại E và F ( E nằm giữ M và O).cm ME.HF=MF.EH