a, \(A=\left(x^2+x\right)^2-14\left(x^2+x\right)+24\)
Đặt \(x^2+x=a\)ta có
\(B=a^2-14a+24\)
\(=a^2-2a-12a+24\)
\(=a\left(a-2\right)-12\left(a-2\right)\)
\(=\left(a-2\right)\left(a-12\right)\)
Thay \(a=x^2+x\)ta có
\(B=\left(x^2+x-2\right)\left(x^2+x-12\right)\)
\(=\left(x^2+2x-x-2\right)\left(x^2+3x-4x-12\right)\)
\(=\left[x\left(x+2\right)-\left(x+2\right)\right]\left[x\left(x+3\right)-4\left(x+3\right)\right]\)
\(=\left(x+2\right)\left(x-1\right)\left(x+3\right)\left(x-4\right)\)
\(KL\)....
b, \(B=\left(x^2+x\right)^2+4x^2+4x-12\)
\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
Đặt \(x^2+x=a\)ta có
\(B=a^2+4a-12\)
\(=a^2+6a-2a-12\)
\(=a\left(a+6\right)-2\left(a+6\right)\)
\(=\left(a+6\right)\left(a-2\right)\)
Thay \(x^2+x\)ta được
\(B=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x^2+2x-x-2\right)\)
\(=\left(x^2+x+6\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)
\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)
\(KL......\)
c, \(C=x^4+2x^3+5x^2+4x-12\)
\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)
\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)
d, \(D=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+4+2\right)+1\)
Đặt \(x^2+5x+4=a\)ta có
\(D=a\left(a+2\right)+1=a^2+2a+1=a^2+a+a+1=a\left(a+1\right)+\left(a+1\right)=\left(a+1\right)\left(a+1\right)\)
Thay \(a=x^2+5x+4\)ta được
\(D=\left(x^2+5x+5\right)^2\)
\(KL...\)
e, câu e bn lm giống như câu d nhóm (x + 1 )với ( x + 7 ); (x + 5) với ( x+3) r đặt ẩn phụ