HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Giair phương trình: \(x+\dfrac{x}{\sqrt{x^2-1}}=2\sqrt{2}\)
Tìm GTLN của P=\(\dfrac{x+3}{x+\sqrt{x}+1}\)
Tìm GTNN của P=\(\dfrac{x+1}{\sqrt{x}-1}\)
Cho \(x=\dfrac{-1+\sqrt{3}}{2};y=\dfrac{-1-\sqrt{3}}{2}\). Tính \(x^{11}+y^{11}\)
Cho \(x=ab+\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\); \(y=a\sqrt{1+b^2}+b\sqrt{1+a^2}\). Tính y theo x, biết ab>0
Cho \(x=\dfrac{1-\sqrt{3}}{2};y=\dfrac{-1-\sqrt{3}}{2}\). Tính \(x^{11}+y^{11}\)
Cho số thực x,y thỏa mãn \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\). Tính giá trị của
\(P=x^7+y^7+2x^5+2y^5-3x^3-3y^3+4x+4y+100\)
Cho P=\(x-\sqrt{x}+1\) với x>0; x\(\ne1\). Tìm x để \(Q=\dfrac{2\sqrt{x}}{P}\) nguyên
\(P=\dfrac{2x+2}{\sqrt{x}}+\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x^2+\sqrt{x}}{x\sqrt{x}+x}\) \(\left(x>0;x\ne1\right)\)
Tìm x để \(\dfrac{7}{P}\) nguyên
Cho P=\(P=\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}\). Chứng minh rằng: \(\sqrt[3]{P^2}=\sqrt[3]{x^2}+\sqrt[3]{y^2}\)