Đường thẳng (d) y = (m+1)x+3 cắt đường thẳng y = \(\dfrac{-3}{2}x+3\)
(d’) tại điểm M. Gọi N và P lần lượt là giao điểm của đường thẳng (d) và (d’) với trục hoành Ox. Tìm m để diện tích tam giác OMP bằng 2 lần diện tích tam giác OMN.
Cho biểu thức:
\(A=\left(1-\dfrac{\sqrt{x}}{\sqrt{x+1}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x+6}}\right)\)
a) Rút gọn A
b) Tìm x để A<0
c) Tìm giá trị nhỏ nhất của A
d) Tính giá trị nguyên của x để A nhận giá trị nguyên