a: Độ dài cung MA của (O) là:
\(l_{MA}=\frac{\pi\cdot R\cdot\hat{AOM}}{180^{}}\) (1)
Xét (O') có \(\hat{BOM}\) là góc nội tiếp chắn cung BM
=>\(\hat{BO^{\prime}M}=2\cdot\hat{BOM}=2\cdot\hat{MOA}\)
Độ dài cung MB của (O') là:
\(l_{MB}=\frac{O^{\prime}M\cdot\pi\cdot\hat{MO^{\prime}B}}{180}=\frac{0,5\cdot OM\cdot\pi\cdot2\cdot\hat{MOA}}{180}=\frac{R\cdot\pi\cdot\hat{MOA}}{180}\) (2)
Từ (1),(2) suy ra độ dài cung MA của (O)=độ dài cung MB của (O')
b: Diện tích hình quạt tròn OAM của (O) là:
\(S_{q\left(OAM\right)}=\frac{\pi\cdot R^2\cdot n}{360}=\frac{\pi\cdot10^2\cdot45}{360}=\pi\cdot12,5\) (cm^2)
Ta có: \(\hat{MO^{\prime}B}=2\cdot\hat{MOB}\)
\(=2\cdot45^0=90^0\)
Diện tích hình quạt tròn O'MB của (O') là:
\(S_{q\left(O^{\prime}MB\right)}=\frac{\pi\cdot\left(R^{\prime}\right)^2\cdot n}{360}=\frac{\pi\cdot\left(0,5R\right)^2\cdot90}{360}=\frac{\pi\cdot0,25\cdot R^2}{4}=\frac{\pi\cdot10^2}{16}=6,25\cdot\pi\) (cm^2)
Diện tích tam giác OO'B là:
\(S_{O^{\prime}OB}=\frac12\cdot O^{\prime}O\cdot O^{\prime}B=\frac12\cdot5\cdot5=\frac{25}{2}=12,5\left(\operatorname{cm}^2\right)\)
Diện tích cần tìm là:
\(S=S_{q\left(OAM\right)}-\left(S_{q\left(O^{\prime}MB\right)}+S_{O^{\prime}OB}\right)=12.5\pi-6,25\pi-12,5=6,25\pi-12,5\) \(\left(\operatorname{cm}^2\right)\)