Sửa đề: \(\frac{\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\cdots+\frac{1}{2013\cdot2014}}{\frac{1}{1008\cdot2014}+\frac{1}{1009\cdot2013}+\cdots+\frac{1}{2014\cdot1008}}\)
Ta có: \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\cdots+\frac{1}{2013\cdot2014}\)
\(=1-\frac12+\frac13-\frac14+\cdots+\frac{1}{2013}-\frac{1}{2014}\)
\(=1+\frac12+\frac13+\cdots+\frac{1}{2013}+\frac{1}{2014}-2\left(\frac12+\frac14+\cdots+\frac{1}{2014}\right)\)
\(=1+\frac12+\frac13+\cdots+\frac{1}{2013}+\frac{1}{2014}-1-\frac12-\cdots-\frac{1}{1007}\)
\(=\frac{1}{1008}+\frac{1}{1009}+\cdots+\frac{1}{2014}\)
Ta có: \(\frac{1}{1008\cdot2014}+\frac{1}{1009\cdot2013}+\cdots+\frac{1}{2014\cdot1008}\)
\(=\frac{2}{1008\cdot2014}+\frac{2}{1009\cdot2013}+\cdots+\frac{2}{1510\cdot1512}+\frac{1}{1511\cdot1511}\)
\(=2\left(\frac{1}{1008\cdot2014}+\frac{1}{1009\cdot2013}+\cdots+\frac{1}{1510\cdot1512}\right)+\frac{1}{1511\cdot1511}\)
\(=\frac{2}{3022}\left(\frac{3022}{1008\cdot2014}+\frac{3022}{1009\cdot2013}+\cdots+\frac{3022}{1510\cdot1512}\right)+\frac{1}{1511\cdot1511}\)
\(=\frac{1}{1511}\left(\frac{1}{1008}+\frac{1}{2014}+\frac{1}{1009}+\frac{1}{2013}+\cdots+\frac{1}{1510}+\frac{1}{1512}\right)+\frac{1}{1511}\cdot\frac{1}{1511}\)
\(=\frac{1}{1511}\left(\frac{1}{1008}+\frac{1}{1009}+\cdots+\frac{1}{2013}+\frac{1}{2014}\right)\)
Ta có: \(\frac{\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\cdots+\frac{1}{2013\cdot2014}}{\frac{1}{1008\cdot2014}+\frac{1}{1009\cdot2013}+\cdots+\frac{1}{2014\cdot1008}}\)
\(=\frac{\frac{1}{1008}+\frac{1}{1009}+\cdots+\frac{1}{2014}}{\frac{1}{1511}\left(\frac{1}{1008}+\frac{1}{1009}+\cdots+\frac{1}{2013}+\frac{1}{2014}\right)}\)
\(=1:\frac{1}{1511}=1511\)