a: ĐKXĐ: x>=4
Ta có: \(\sqrt{3x+4}+\sqrt{x-4}=2\sqrt{x}\)
=>\(\sqrt{3x+4}-4+\sqrt{x-4}=2\sqrt{x}-4\)
=>\(\frac{3x+4-16}{\sqrt{3x+4}+4}+\sqrt{x-4}=2\left(\sqrt{x}-2\right)=2\cdot\frac{x-4}{\sqrt{x}+2}\)
=>\(\frac{3x-12}{\sqrt{3x+4}+4}+\sqrt{x-4}-2\cdot\frac{x-4}{\sqrt{x+2}}=0\)
=>\(\left(\sqrt{x-4}\right)\left(\frac{3\sqrt{x-4}}{\sqrt{3x+4}+4}+1-\frac{2}{\sqrt{x}+2}\right)=0\)
=>x-4=0
=>x=4(nhận)
c: ĐKXĐ: \(2x^2-x\ge0\)
=>x(2x-1)>=0
=>x>=1/2 hoặc x<=0
Ta có: \(\sqrt{2x^2-x}=2x-x^2\)
=>\(\left(2x-x^2\right)^2=2x^2-x\) và \(2x-x^2\ge0\)
=>\(x^4-4x^3+4x^2-2x^2+x=0\) và x(2-x)>=0
=>\(x^4-4x^3+2x^2+x=0\) và x(x-2)<=0
=>\(x\left(x^3-4x^2+2x+1\right)=0\) và 0<=x<=2
=>\(x\left(x^3-x^2-3x^2+3x-x+1\right)=0\) và 0<=x<=2
=>x(x-1)(x^2-3x-1)=0 và 0<=x<=2
Ta có: x(x-1)(x^2-3x-1)=0
=>\(\left[\begin{array}{l}x=0\\ x-1=0\\ x^2-3x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(nhận\right)\\ x=1\left(nhận\right)\\ x^2-3x+\frac94-\frac{13}{4}=0\end{array}\right.\)
=>\(\left[\begin{array}{l}x=0\\ x=1\\ \left(x-\frac32\right)^2=\frac{13}{4}\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=1\\ x-\frac32=\frac{\sqrt{13}}{2}\\ x-\frac32=-\frac{\sqrt{13}}{2}\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=1\\ x=\frac{\sqrt{13}+3}{2}\\ x=\frac{-\sqrt{13}+3}{2}\end{array}\right.\)
mà 0<=x<=2
nên x∈{0;1}