1 .Chưng minh rằng
(1+1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
Xét: (1+1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100) =
(1+1/3+1/5+....+1/99) + (1/2+1/4+1/6+...+1/100) - (1/2+1/4+1/6+...+1/100) x 2 =
(1+1/2+1/3+1/4+1/5+1/6+....+1/99+1/100) - (1/2+1/4+1/6+...+1/100) x 2 =
(1+1/2+1/3+1/4+1/5+1/6+....+1/99+1/100) - (1+1/2+1/3+...+1/50) =
1/51+1/52+1/53+ … + 1/100
Hay:
(1+1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
2.Áp dụng phan 1 để chung minh
1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
Viết lại:
(1+1/3+1/5+ … +1/199) – (1/2+1/4+1/6+ … +1/200) = 1/101+1/102+ … +1/200
Tương tự như trên ta được:
(1+1/2+1/3+1/4+1/5+1/6+....+1/199+1/200) - (1/2+1/4+1/6+...+1/200) x 2 =
(1+1/2+1/3+1/4+1/5+1/6+....+1/199+1/200) - (1+1/2+1/3+...+1/100) =
1/101+1/102+ … +1/200
Hay:
1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200