HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
ta có :
y' = -3x2 -4x +1 → y" = -6x -4 = 0
→ x = \(\dfrac{-2}{3}\)
A
b) phương trìnhC2H5OH + CuO \(\underrightarrow{t^o}\) CH3COOH + Cu + H2O
C3H7OH + CuO \(\underrightarrow{t^o}\) C2H5COOH + Cu + H2O
a) nH2 = 0,125 mol
C2H5OH + Na → C2H5ONa + \(\dfrac{1}{2}\)H2x.............................................\(\dfrac{x}{2}\)
C3H7OH + Na → C3H7ONa + \(\dfrac{1}{2}\)H2
y..............................................\(\dfrac{y}{2}\)
ta có \(\left\{{}\begin{matrix}46x+60y=12,2\\x+y=0,25\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0,2\\y=0,05\end{matrix}\right.\)
→%C2H5OH = \(\dfrac{0,2.46}{12,2}.100\%\) \(\approx\) 75,41%
→%C3H7OH = 24,59%
g'(x) = \(\sqrt{x+3}\)
ta có phương trình : \(\sqrt{x+3}\) + \(\sqrt{2x-1}\) =3 ( ĐK : x\(\ge\)\(\dfrac{1}{2}\))
\(\Leftrightarrow\) x+3 +2x-1 +\(2\sqrt{\left(x+3\right)\left(2x-1\right)}\) = 9
\(\Leftrightarrow\) \(2\sqrt{\left(x+3\right)\left(2x-1\right)}\) = 7-3x
\(\Leftrightarrow\) 4(2x2 +5x -3) = 49 - 42x +9x2
\(\Leftrightarrow\) x2 - 62x +61 = 0 \(\left\{{}\begin{matrix}x=61\\x=1\end{matrix}\right.\)
xo = 2 → yo = 2
y' = \(\dfrac{x-1}{\sqrt{x^2-2x+4}}\) → y'(2) = \(\dfrac{1}{2}\)
phương trình tiếp tuyến có dạng:
y = \(\dfrac{1}{2}\)x +1
f'(x) = 3x2 - 6x
-> f'(3) = 3.33 - 6.3 = 9
đáp án D
y' = \(\dfrac{\left(2x+2\right)\left(x-2\right)-\left(x^2+2x\right)}{\left(x-2\right)^2}\) = \(\dfrac{x^2-4x-4}{\left(x-2\right)^2}\)
→ y'(1) = -7
a)ta có :D = \(\dfrac{1}{f}\) = 3 (dp) → f =\(\dfrac{1}{3}m\)= \(\dfrac{100}{3}cm\)
b)d1 = 10cm
→d1' = \(\dfrac{d_1.f}{d_1-f}\) = \(\dfrac{10.\dfrac{100}{3}}{10-\dfrac{100}{3}}\)= \(\dfrac{-100}{7}\) cm
→ảnh là ảnh ảo
K = \(\dfrac{d_1'}{d_1}\) = \(\dfrac{-100}{7.10}\) = \(\dfrac{-10}{7}\)
b) vì pttt song song với đường thẳng y=-\(\dfrac{1}{8}\)x +5
→ K =- \(\dfrac{1}{8}\)
y' = \(\dfrac{-2}{\left(x-1\right)^2}\) = \(\dfrac{-1}{8}\) → \(x\left[{}\begin{matrix}xo=5\\xo=-3\end{matrix}\right.\) → \(\left[{}\begin{matrix}y_o=\dfrac{3}{2}\\y_o=\dfrac{1}{2}\end{matrix}\right.\)
- phương trình tiếp tuyến có dạng :
+ y = \(\dfrac{-1}{8}\)(x-5) +\(\dfrac{3}{2}\) = \(\dfrac{-1}{8}x\) + \(\dfrac{17}{8}\)
+ y= \(\dfrac{-1}{8}\)(x+3) +\(\dfrac{1}{2}\) = \(\dfrac{-1}{8}x\) + \(\dfrac{1}{8}\)