giải các phương trình sau: ( pt bậc nhất đối với sinx và cosx)
a, \(sinx+cosx=\sqrt{2}sin5x\)
b, \(\sqrt{3}sin2x+sin\left(\frac{\pi}{2}+2x\right)=1\)
c, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx+\sqrt{3}-1=0\)
d, \(3sin^2x+\sqrt{3}sin2x=3\)
e, \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)
f,\(8cos2x=\frac{\sqrt{3}}{sinx}+\frac{1}{cosx}\)
g, \(cosx-\sqrt{3}sinx=2cos\left(\frac{\pi}{3}-x\right)\)
h, \(sin5x-cos5x=\sqrt{2}cos13x\)
i, \(\left(3cosx-4sinx+6\right)^2-9cosx+12sinx-16=0\)
giải các pt sau:
a,\(4sin^23x+2\left(\sqrt{3}+1\right)cos3x-\sqrt{3}=4\)
b, \(cos2x+9cosx+5=0\)
c,\(4cos^2\left(2-6x\right)+16cos^2\left(1-3x\right)=13\)
d, \(\frac{1}{cos^2x}-\left(1+\sqrt{3}\right)tanx-1+\sqrt{3}=0\)
e, \(\frac{3}{cosx}+tan^2x=9\)
f, \(\frac{1}{sin^2x}=cotx+3\)
g,\(9-13cosx+\frac{4}{1+tan^2x}=0\)
h,\(\frac{1}{cos^2x}+3cot^2x=5\)
i, \(cos2x-3cosx=4cos^2\frac{x}{2}\)
k, \(2cos2x+tanx=1\)
1:cho phương trình sau: \(sinx+\frac{sinx+cos3x}{1+2sinx}=\frac{3+cos2x}{5}\).
tìm các nghiệm thuộc khoảng từ \(\left(0,2\pi\right)\)
2:cho phương trình sau: \(cos5x.cosx=cos4x.cos2x+3cos2x+1\).
tìm các nghiệm thuộc khoảng từ \(\left(-\pi;\pi\right)\)