a) Vì ABCD là HCN (gt) => \(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}\) (= 90 độ) và AB // CD
=> \(\widehat{ABD}=\widehat{BDC}\)
xét tam giác AHB và tam giác BCD có:
\(\widehat{ABD}=\widehat{BDC}\) (cmt)
\(\widehat{AHB}=\widehat{BCD}\) (= 90 độ)
=> tam giác AHB \(\sim\) tam giác BCD(gg)
b) xét tam giác AHD và tam giác BAD có:
\(\widehat{AHD}=\widehat{BAD}\) (= 90 độ)
\(\widehat{ADB}\) chung
=> tam giác AHD \(\sim\) tam giác BAD(gg)
=> \(\dfrac{AD}{BD}=\dfrac{HD}{AD}\) (các cạnh t/ứ tỉ lệ)
=> AD . AD = BD . HD => \(AD^2\) = BD . HD
c) Vì ABCD là HCN(gt) => AD = BC
Mà BC = 6 cm => AD = 6 cm
xét tam giác AED vuông tại A
Theo đ/lí Pytago:
\(BD^2\) = \(AD^2+AB^2\)
=> \(BD^2\)= 36 + 64
=> \(BD^2\)= 100
=> BD = 10 cm
VÌ \(AD^2\) = DH . DB (câu b) => DH = \(\dfrac{AD^2}{DB}\)
=> DH = \(\dfrac{36}{10}\)= 3,6 cm
vì tam giác AHB \(\sim\) tam giác BCD (câu a)
=> \(\dfrac{AH}{BC}=\dfrac{AB}{BD}\) (các canh t/ứ tỉ lệ)
=> AH = \(\dfrac{BC.AB}{BD}\)= \(\dfrac{6.8}{10}\)= 4,8 cm