a.\(\dfrac{6n+5}{16n+13}\)
Gọi ƯCLN(6n+5;16n+13)là d(d\(_{\in Z}\))
\(\Rightarrow\left\{{}\begin{matrix}6n+5⋮d\\16n+13⋮d\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}8(6n+5)⋮d\\3\left(16n+13\right)⋮d\end{matrix}\right.\)
\(\Leftrightarrow48n+40-48n+39⋮d\)
=\(1⋮d\)
Vậy \(d\in\left\{-1;1\right\}\).\(\Leftrightarrow\)Phân số\(\dfrac{6n+5}{16n+13}\)là phân số tối giản.
b.\(\dfrac{2n+1}{4n+6}\)
Gọi ƯCLN(2n+1;4n+6)là d\(\left(d\in Z\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\4n+6⋮d\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}2\left(2n+1\right)\\4n+6\end{matrix}\right.\)
\(\Leftrightarrow4n+2-4n+6\)\(⋮d\)
\(=-4⋮d\)
Vậy \(d\in\left\{-1;-4;1;4\right\}\)
Mà 2n+1\(⋮̸\)-4;4.
\(\Rightarrow\)\(d\in\left\{-1;1\right\}\).
Vậy phân số\(\dfrac{2n+1}{4n+6}\)là phân số tối giản.
c.\(\dfrac{8n+3}{18n+7}\)
Gọi ƯCLN(8n+3;18n+7)là d(\(d\in Z\))
\(\Rightarrow\left\{{}\begin{matrix}8n+3⋮d\\18n+7⋮d\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}9\left(8n+3\right)⋮d\\4\left(18n+7\right)⋮d\end{matrix}\right.\)
\(\Leftrightarrow72n+27-72n+28⋮d\)
\(=-1⋮d\)
\(\Rightarrow d\in\left\{-1;1\right\}\).Vậy phân số \(\dfrac{8n+3}{18n+7}\)là phân số tối giản.
CHÚC BẠN Phạm Ngọc Anh HỌC TỐT NHA
.
A.\(\dfrac{4}{20}\)+\(\dfrac{16}{42}\)+\(\dfrac{6}{15}\)+\(\dfrac{-3}{5}\)+\(\dfrac{2}{21}\)+\(\dfrac{-10}{21}\)+\(\dfrac{3}{20}\)
=\(\dfrac{1}{5}\)+\(\dfrac{8}{21}\)+\(\dfrac{6}{15}\)+\(\dfrac{-3}{5}\)+\(\dfrac{2}{21}\)+\(\dfrac{-10}{21}\)+\(\dfrac{3}{20}\)
=\((\dfrac{1}{5}\)+\(\dfrac{6}{15}\)+\(\dfrac{-3}{5}\)\()\)+\((\dfrac{8}{21}\)+\(\dfrac{2}{21}\)+\(\dfrac{-10}{21}\)\()\)+\(\dfrac{3}{20}\)
=\((\)\(\dfrac{1}{5}\)+\(\dfrac{2}{5}\)+\(\dfrac{-3}{5}\)\()\)+ 0 +\(\dfrac{3}{20}\)
= 0 + 0 +\(\dfrac{3}{20}\)
=\(\dfrac{3}{20}\)
B.\(\dfrac{42}{46}\)+\(\dfrac{250}{286}\)+\(\dfrac{-2121}{2323}\)+\(\dfrac{-125125}{143143}\)
=\(\dfrac{21}{23}\)+\(\dfrac{125}{143}\)+\(\dfrac{-21}{23}\)+\(\dfrac{-125}{134}\)
=\((\dfrac{21}{23}+\dfrac{-21}{23})+(\dfrac{125}{143}+\dfrac{-125}{134})\)
= 0 + 0
= 0
Chúc bạn Tran Mai học tốt nha![]()