3, ĐKXĐ: a, b, c \(\ne0\) ; \(a+b+c\ne0\)
Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
<=> \(\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)
<=> \(\left(a+b+c\right)\left(bc+ac+ab\right)=abc\)
<=> \(abc+a^2c+a^2b+b^2c+abc+ab^2+bc^2+abc+ac^2=abc\)
<=> \(a^2c+a^2b+b^2c+ab^2+bc^2+ac^2+2abc=0\)
<=>\(\left(a^2c+abc\right)+\left(a^2b+ab^2\right)+\left(b^2c+abc\right)+\left(bc^2+ac^2\right)=0\)
<=> \(ac\left(a+b\right)+ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)
<=> \(\left(a+b\right)\left(ac+ab+bc+c^2\right)=0\) <=> \(\left(a+b\right)\left[a\left(c+b\right)+c\left(b+c\right)\right]=0\)
<=> \(\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
Lại có: \(A=\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\left(b+c\right)\left(b^2-bc+c^2\right)\left(c+a\right)\left(c^2-ac+a^2\right)=0\) (Do \(\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\))
Vậy \(A=\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)=0\) khi \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)