Câu 3:
Áp dụng bđt AM - GM, ta có:
\(M=xyz\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
\(\le\dfrac{\left(x+y+z\right)^3}{27}\times\dfrac{\left[\left(x+y\right)+\left(x+z\right)+\left(y+z\right)\right]^3}{27}\)
\(=\dfrac{1^3}{27}\times\dfrac{2^3}{27}=\dfrac{8}{729}\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Câu 6:
Áp dụng bđt Cauchy Shwarz dạng Engel và bđt AM - GM, ta có:
\(M=\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\)
\(=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+bd}+\dfrac{c^2}{cd+ac}+\dfrac{d^2}{ad+bd}\)
\(\ge\dfrac{\left(a+b+c+d\right)^2}{ad+bc+cd+ab+2ac+2bd}\)
\(=\dfrac{2\left(a+b+c+d\right)^2}{\left(2ad+2bc+2cd+2ab+2ac+2bd\right)+2ac+2bd}\)
\(\ge\dfrac{2\left(a+b+c+d\right)^2}{\left(2ad+2bc+2cd+2ab+2ac+2bd\right)+a^2+c^2+b^2+d^2}\)
\(=\dfrac{2\left(a+b+c+d\right)^2}{\left(a+b+c+d\right)^2}=2\)
Dấu "=" xảy ra khi a = b = c = d