a)
\(\dfrac{1993+1993.1994}{1992.1995+1995}\)
= \(\dfrac{1993.1+1993.1994}{1992.1995+1995.1}\)
= \(\dfrac{1993\left(1+1994\right)}{1995\left(1992+1\right)}\)
= \(\dfrac{1993.1995}{1995.1993}\)
= \(1\)
b)
\(\dfrac{399.45+55.399}{1995.1996-1991.1995}\)
= \(\dfrac{399\left(45+55\right)}{1995\left(1996-1991\right)}\)
= \(\dfrac{399.100}{1995.5}\)
= \(\dfrac{39900}{9975}\)
= \(4\)
c)
\(\dfrac{1996.1995-996}{1000+1996.1994}\)
= \(\dfrac{1996.1995-996-1000}{-1000+1000+1996.1994}\)
= \(\dfrac{1996.1995-1996}{1996.1994}\)
= \(\dfrac{1996\left(1995-1\right)}{1996.1994}\)
= \(\dfrac{1996.1994}{1996.1994}\)
= \(1\)
d)
\(\dfrac{1998.1996+1997.11+1985}{1997.1996-1995.1996}\)
= 1005
(cách tính của bài d mình chưa tìm ra xin lỗi nha
)