a) \(\left(x-3^2\right)^3=\left(3^3\right)^2=\left(3^2\right)^3\)
\(\Rightarrow x-3^2=3^2\)
\(\Rightarrow x=3^2+3^2=9+9=18\)
Vậy x = 18
b) \(\frac{3x}{2}=\frac{4y}{5}=\frac{4y-3x}{5-2}=\frac{\left(3y-3x\right)+y}{3}=\frac{3\left(y-x\right)+y}{3}=\frac{63+y}{3}=\frac{y}{3}+21\)
Ta có: \(\frac{4y}{5}=\frac{y}{3}+21\)
\(\Rightarrow\frac{4y}{5}-\frac{y}{3}=21\)
\(\Rightarrow\frac{12y-5y}{15}=21\)
\(\Rightarrow7y=21.15=315\)
\(\Rightarrow y=315:7=45\)
Thay y = 45, ta đc :
\(\frac{3x}{2}=\frac{4.45}{5}=\frac{180}{5}=36\)
\(\Rightarrow3x=36.2=72\)
\(\Rightarrow x=72:3=24\)
Vậy x = 24, y = 45.
c, \(\frac{x-3}{x+5}=\frac{5}{7}\)
\(\Rightarrow\frac{x+5-8}{x+5}=\frac{5}{7}\)
\(\Rightarrow1+\frac{8}{x+5}=\frac{5}{7}\)
\(\Rightarrow\frac{8}{x+5}=-\frac{2}{7}\)
\(\Rightarrow x+5=8:-\frac{2}{7}=-28\)
\(\Rightarrow x=-28-5=-33\)
Vậy x = -33.
d) \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
\(\Rightarrow\left(x-1\right)\left(x+3\right)=\left(x+2\right)\left(x-2\right)\)
\(\Rightarrow x\left(x+3\right)-\left(x+3\right)=x\left(x-2\right)+2\left(x-2\right)\)
\(\Rightarrow x^2+3x-x-3=x^2-2x+2x-4\)
\(\Rightarrow2x-3=-4\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\)