HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(\left(x-3\right)^{x+3}-\left(x-3\right)^{x+1}=0\)
\(\left(x-3\right)^{x+1}\left[\left(x-3\right)^2-1\right]=0\)
\(\left(x-3\right)^{x+1}\left(x^2-6x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x^2-6x+8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{2;3;4\right\}\)
\(\sqrt{x+2}+\sqrt{9x+18}=\sqrt{4x+8+6}\)
\(\sqrt{x+2}+\sqrt{9\left(x+2\right)}=\sqrt{4x+14}\) \(\left(Đk:x\ge-2\right)\)
\(4\sqrt{x+2}=\sqrt{4x+14}\)
\(16\left(x+2\right)=4x+14\)
\(12x=-18\)
\(x=-\dfrac{3}{2}\left(TM\right)\)
Vậy \(S=\left\{-\dfrac{3}{2}\right\}\)
\(44.102\)
\(=44.\left(100+2\right)\)
\(=44.100+44.2\)
\(=4400+88\)
\(=4488\)
\(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Rightarrow x^2+y^2-z^2=-2xy\)
Tương tự: \(\left\{{}\begin{matrix}y^2+z^2-x^2=-2yz\\z^2+x^2-y^2=-2zx\end{matrix}\right.\)
\(A=\dfrac{xy}{x^2+y^2-z^2}+\dfrac{yz}{y^2+z^2-x^2}+\dfrac{zx}{z^2+x^2-y^2}\)
\(=-\left(\dfrac{xy}{2xy}+\dfrac{yz}{2yz}+\dfrac{zx}{2zx}\right)=-\dfrac{3}{2}\)
\(\left(x-\dfrac{1}{2}\right)^3=81=\left(\sqrt[3]{81}\right)^3\)
\(\Leftrightarrow x-\dfrac{1}{2}=\sqrt[3]{81}\)
\(\Leftrightarrow x=\sqrt[3]{81}+\dfrac{1}{2}\)
\(x^3+y^3+21x+21y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+21\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+21\right)\)