Giải:
\(A=\dfrac{-7}{21}+\left(1+\dfrac{1}{3}\right)\)
\(A=\dfrac{-7}{21}+\dfrac{4}{3}\)
\(A=\dfrac{-7}{21}+\dfrac{28}{21}\)
\(A=\dfrac{21}{21}=1\)
\(B=\dfrac{2}{15}+\left(\dfrac{5}{9}+\dfrac{-6}{9}\right)\)
\(B=\dfrac{2}{15}+\dfrac{-1}{9}\)
\(B=\dfrac{6}{45}+\dfrac{-5}{45}\)
\(B=\dfrac{1}{45}\)
\(C=\left(9-\dfrac{1}{5}+\dfrac{3}{12}\right)+\dfrac{-3}{4}\)
\(C=\left(\dfrac{44}{5}+\dfrac{1}{4}\right)+\dfrac{-3}{4}\)
\(C=\dfrac{181}{20}+\dfrac{-3}{4}\)
\(C=\dfrac{181}{20}+\dfrac{-15}{20}\)
\(C=\dfrac{166}{20}\)
Bài 6:
\(a)x+\dfrac{7}{8}=\dfrac{13}{12}\)
⇔\(x=\dfrac{13}{12}-\dfrac{7}{8}=\dfrac{5}{24}\)
\(b)\dfrac{-6}{12}-x=\dfrac{9}{48}\)
⇔\(x=\dfrac{-6}{12}-\dfrac{9}{48}=\dfrac{-11}{16}\)
\(c)x+\dfrac{4}{6}=\dfrac{5}{25}-\dfrac{-7}{15}\)
\(\Leftrightarrow x+\dfrac{2}{3}=\dfrac{2}{3}\)
\(\Leftrightarrow x=\dfrac{2}{3}-\dfrac{2}{3}=0\)
\(d)x+\dfrac{4}{5}=\dfrac{6}{20}-\dfrac{-7}{3}\)
⇔\(x+\dfrac{4}{5}=\dfrac{79}{30}\)
⇔\(x=\dfrac{79}{30}-\dfrac{4}{5}=\dfrac{11}{6}\)