HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a. x3−2x2y+xy−9x=x(x2+2xy+y2−9)=x(x+y)2−32=x(x+y−3)(x+y+3)
=y(1−x2−2xy−y2)=y(1−x2−2xy−y2)
=y[1−(x+y)2]=y[1−(x+y)2]
=y(1−x−y)(1+y+x)
(x2−3x).(2x−1)−x.(2x2−7x)=12⇔2x3−x2−6x2+3x−2x3+7x2=12⇔3x=12⇔x=4
(x+2)(x2−4x+1)−(x3−2x2+2)=−18(x+2)(x2-4x+1)-(x3-2x2+2)=-18
⇔x3−4x2+x+2x2−8x+2−x3+2x2−2=18⇔x3-4x2+x+2x2-8x+2-x3+2x2-2=18
⇔−7x=−18⇔-7x=-18
⇔x=187⇔x=187
Vậy S={187}
(x+2).(x2−4x+1)−(x3−2x2+2)=−18⇔x3−4x2+x+2x2−8x+2−x3+2x2−2=−18⇔−7x=−18⇔x\(=\dfrac{18}{7}\)