HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(B=\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{6}\right)\cdot\left(1-\dfrac{1}{10}\right)\cdot\left(1-\dfrac{1}{15}\right)\cdot...\cdot\left(1-\dfrac{1}{780}\right)\)
\(B=\left(1-\dfrac{1}{3+6+10+15+...+780}\right)\)
\(B=\left(1-\dfrac{1}{\left(780-3\right)\div3+1}\right)\)
\(B=\left(1-\dfrac{1}{260}\right)\)
\(B=\dfrac{259}{260}\)
\(S=\dfrac{1}{7^2}+\dfrac{2}{7^3}+\dfrac{3}{7^3}+...+\dfrac{69}{7^{70}}\)
\(S=\dfrac{1+2+3+...+69}{\left(7\right)^{2+3+4+...+70}}\)
\(S=\dfrac{\left(69-1\right)+1}{\left(7\right)^{\left(70-2\right)+1}}\)
\(S=\dfrac{69}{7^{69}}\)
\(\Rightarrow S=7\)
Vậy \(S< \dfrac{1}{36}\)
\(A=\dfrac{2}{1}+2+\dfrac{5}{1}+2+3+\dfrac{9}{1}+2+3+4+...+\dfrac{2041210}{1}+2+3+4+...+2020\)
\(A=\left(\dfrac{2+5+9+...+2041210}{1}\right)+2+3+4+...+2020\)
\(A=\left(\dfrac{\left(2041210-2\right)\div4+1}{1}\right)+2+3+4+...+2020\)
\(A=\dfrac{510304}{1}+\left(2+3+4+...+2020\right)\)
\(A=510304+\left(2020-2\right)+1\)
\(A=510304+2019\)
\(A=512323\)
\(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2020}\)
\(=\dfrac{1}{1+2+3+...+2020}\)
\(=\dfrac{1}{\left(2020-1\right)+1}\)
\(=\dfrac{1}{2020}\)
\(C=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2022^2}\)
\(C=\dfrac{1}{\left(2+3+4+...+2022\right)^2}\)
\(C=\dfrac{1}{\left(2022-2+1\right)^2}\)
\(C=\dfrac{1}{2021^2}\)
\(C=\dfrac{1}{2021\cdot2021}\)
\(C=\dfrac{1\div2021}{2021}\)
\(C=1\)
Vì \(1>\dfrac{13}{18}\)
\(\Rightarrow C>\dfrac{13}{18}\)
có nha em
lx rồi nha em
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}< 1\)
\(A=\dfrac{1}{\left(2+3+4+...+2021\right)^2}< 1\)
\(A=\dfrac{1}{\left(2021-2+1\right)^2}< 1\)
\(A=\dfrac{1}{\left(2020\right)^2}< 1\)
\(A=\dfrac{1}{2020\cdot2020}< 1\)
\(A=\dfrac{1}{2020}< 1\)
\(\left(1-\dfrac{1}{2^2}\right)\cdot\left(1-\dfrac{1}{3^2}\right)\cdot...\cdot\left(1-\dfrac{1}{10^2}\right)\)
\(=\left(1-\dfrac{1}{\left(2\cdot3\cdot...\cdot10\right)^2}\right)\)
\(=\left(1-\dfrac{1}{\left(10-2+1\right)^2}\right)\)
\(=\left(1-\dfrac{1}{9^2}\right)\)
\(=1-\dfrac{1}{18}\)
\(=\dfrac{18}{18}+\dfrac{1}{18}\)
\(=\dfrac{17}{18}\)
Useful for those who still don't know how to write difficult words. For example, from accommodation to acommodation, achieve to acheive, across to accross, address to adress, appearance to appearence,assassination to assasination, argument to arguement,autumn to autum,beginning to beggining,business to buisness,beneficial to benefitial,colleague to collegue,committee to commitee,...As a sin for the unrecognized.Thanks to an expert teacher on how to stress stress or how to write: It's all thanks to good teachers, there are good teachers solid foundation! Thanks teacher!