HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho tam giác ABC trên cạnh AB lấy D;E sao cho AD=\(BE< \dfrac{AB}{2}\)Qua D và E kẻ các đường thảng // với BC chúng cắt AC theo thứ tự tại M,N CMR BC=DM+EN
Tìm x để căn thức sau xác định
a)A=\(\sqrt{x-3}-\sqrt{\dfrac{1}{4-x}}\)
b)B=\(\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{x^2-4x+4}}\)
\(\sqrt{x+1}+\sqrt{1-x}\)
\(\sqrt{\dfrac{1}{2-x}}\)
Cho tam giác ABC trên tia đối của BA,CA lần lượt lấy các điểm P,U sao cho BP=CU gọi M,N lần lượt là trung điểm của các đoạn thảng BC và PU đường thẳng MN cắt các đường thảng AB và AC tại I và K .CM tam giác AIK cân
cho tam giác ABC vuông tại A.từ trung điểm D của AC kẻ DE vuông góc với BC tại E CMR:
1 \(BE^2-CE^2=BD^2-CD^2\)
2 \(AB^2=BE^2-CE^2\)
Cho tứ giác lồi ABCD có AC vuông góc BD tại O Chứng minh rằng :
Câu 1 \(AB^2+BC^2+CD^2+DA^2=2\left(OA^2+OB^2+OC^2+OD^2\right)\)
Câu 2 \(AB^2+CD^2=AD^2+BC^2\)
Cho tam giác ABC nhọn có đường cao AH. Chứng minh rằng :
\(AB^2-AC^2=BH^2-CH^2\)
\(\dfrac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{4}{1-\sqrt{7}}\)
\(\dfrac{1}{\sqrt{49+20\sqrt{6}}}-\dfrac{1}{\sqrt{49-20\sqrt{6}}}+\dfrac{1}{\sqrt{7-4\sqrt{3}}}\)