ΔAHB vuông tại H
=>AB^2=AH^2+HB^2
ΔAHC vuông tại H
=>AC^2=AH^2+CH^2
AB^2-AC^2
=BH^2+AH^2-AH^2-CH^2
=BH^2-CH^2
ΔAHB vuông tại H
=>AB^2=AH^2+HB^2
ΔAHC vuông tại H
=>AC^2=AH^2+CH^2
AB^2-AC^2
=BH^2+AH^2-AH^2-CH^2
=BH^2-CH^2
Cho tam giác ABC có 3 góc nhọn và AH là đường cao
a) Chứng minh AB^2+CH^2=AC^2+BH^
b) Vẽ trung tuyến AM của tam giác ABC, chứng minh:
1. AB^2+AC^2=BC^2/2 +2AM^2
2. AC^2-AB^2=2BC.HM( với AC>AB)
Bài 11: Cho tam giác ABC vuông tại A, đường cao AH.
Chứng minh rằng: BH trên CH = AB^2 trên AC^2, BH =BC cos^2B
Cho tam giác ABC vuông tại A có AC>AB và đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
1) Chứng minh AD.AB = AE.AC và tam giác ADE đồng dạng với tam giác ACB.
2) Cho biết BH = 2cm, CH = 4,5cm. Tính:
a) Độ dài đoạn thẳng DE.
b) Số đo của góc ABC.
c) Diện tích tam giác ADE.
Cho tam giác ABC vuông tại A có AB<AC, BH=9, CH=16. Đường cao AH, \(HM\perp AB\), \(HN\perp AC\). Chứng minh \(BC^3=BM.CN.AH\)
Cho tam giác ABC vuông tại A (AB > AC), đường cao AH
a) Chứng minh: \(\dfrac{AB^2}{BH}=\dfrac{AC^2}{CH}\)
b) Biết \(\widehat{C}\) \(=60^0\), AC = 8, AB = 12. Giải tam giác HAB
1. Cho tam giác ABC vuông A ( AB < AC ) đường cao AH . Chứng minh \(\dfrac{AB^2}{AC^2}=\dfrac{BH}{CH}\)
Cho tam giác ABC vuông tại A có đường cao AH . Hãy tính độ dài các đoạn BC,AH,BH,CH , nếu biết :
1, AB =12 cm , AC= 9cm
2, AB = \(\sqrt{2}\) cm , AC = \(\sqrt{2}\) cm
Cho tam giác ABC vuông tại A có BC = a, CA = b, AB = c, đường cao AH.
a) Chứng minh: \(1+tam^2B=\dfrac{1}{cos^2B};tan\dfrac{C}{2}=\dfrac{c}{a+b}\)
b) Chứng minh: AH = a. sin B. cos B, BH=a·cos2B, CH=a·sin2B
c) Lấy D trên cạnh AC. Kẻ DE vuông góc BC tại E. Chứng minh:
sinB=\(\dfrac{AB\cdot AD+EB\cdot ED}{AB\cdot BE+DA\cdot DE}\) (
cho tam giác ABC vuông tại A có đường cao AH. Gọi M,N lần lượt là hình chiếu của H trên AB và AC. Chứng minh: 1) BM^2 =BH^3/BC
2)AH^3= BC. BM . CN
3) HM . HN =AH^3/BC