a) Nêu hai ví dụ về số hữu tỉ
b) Nêu 2 ví dụ về số vô tỉ
a) Nêu hai ví dụ về số hữu tỉ
b) Nêu 2 ví dụ về số vô tỉ
a) Nêu biểu diễn thập phân của số hữu tỉ.
b) Nêu biểu diễn thập phân của số vô tỉ.
Thảo luận (3)Hướng dẫn giảia) Các số hữu tỉ được biểu diễn bằng các số thập phân hữu hạn hoặc vô hạn tuần hoàn.
b) Các số vô tỉ được biểu diễn bằng các số thập phân vô hạn không tuần hoàn.
(Trả lời bởi Mai Trung Hải Phong)
Biểu diễn các số hữu tỉ sau trên trục số: \( - \frac{1}{2};1;1,25;\frac{7}{4}\)
Thảo luận (1)Hướng dẫn giải
Tìm số đối của mỗi số sau:
\(\frac{2}{{ - 9}}; - 0,5; - \sqrt 3 \)
Thảo luận (3)Hướng dẫn giải2/9; 0,5;\(\sqrt{3}\)
(Trả lời bởi Nguyễn Lê Phước Thịnh)
a) So sánh hai số thập phân sau: -0,617 và -0,614.
b) Nêu quy tắc so sánh 2 số thập phân hữu hạn.
Thảo luận (2)Hướng dẫn giảia) Vì 0,617 > 0,614 nên -0,617 < -0,614
b) * So sánh 2 số thập phân khác dấu: Số thập phân âm luôn nhỏ hơn số thập phân dương
* So sánh 2 số thập phân dương:
Bước 1: So sánh phần số nguyên của 2 số thập phân đó. Số thập phân nào có phần số nguyên lớn hơn thì lớn hơn
Bước 2: Nếu 2 số thập phân dương đó có phần số nguyên bằng nhau thì ta tiếp tục so sánh từng cặp chữ số ở cùng một hàng( sau dấu ","), kể từ trái sang phải cho đến khi xuất hiện cặp chữ số đầu tiên khác nhau. Ở cặp chữ số khác nhau đó, chữ số nào lớn hơn thì số thập phân chứa chữ số đó lớn hơn
*So sánh 2 số thập phân âm:
Nếu a < b thì –a > - b
(Trả lời bởi Hà Quang Minh)
So sánh 2 số thực sau:
a) \(1,(375)\) và \(1\frac{3}{8}\)
b) – 1,(27) và -1,272
Thảo luận (1)Hướng dẫn giảia) Ta có: 1,(375) = 1,375375375…
\(1\frac{3}{8}\) = 1,375
Vì 1,375375... > 1,375 nên 1,(375) > \(1\frac{3}{8}\)
b) Ta có: -1,(27) = -1,272727…
Vì 1,272727… > 1,272 nên - 1,272727 < -1,272 hay – 1,(27) < -1,272
(Trả lời bởi Hà Quang Minh)
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Nếu a \( \in \) Z thì a \( \in \) R
b) Nếu a \( \in \) Q thì a \( \in \) R
c) Nếu a \( \in \) R thì a \( \in \) Z
d) Nếu a \( \in \) R thì a \( \notin \) Q
Thảo luận (2)Hướng dẫn giảia) Đúng vì 1 số nguyên cũng là số thực
b) Đúng vì 1 số hữu tỉ cũng là số thực
c) Sai vì 1 số thực có thể không là số nguyên. Chẳng hạn, số \(0,2 \in R\) nhưng \(0,2 \notin Z\)
d) Sai vì 1 số thực có thể là số hữu tỉ hoặc không là số hữu tỉ. Chẳng hạn \(0,2 \in R\) và \(0,2 \in Q\)
(Trả lời bởi Hà Quang Minh)
Tìm số đối của mỗi số sau:
\(\frac{{ - 8}}{{35}};\frac{5}{{ - 6}}; - \frac{{18}}{7};1,15; - 21,54; - \sqrt 7 ;\sqrt 5 \)
Thảo luận (1)Hướng dẫn giảiSố đối của \(\frac{{ - 8}}{{35}};\frac{5}{{ - 6}}; - \frac{{18}}{7};1,15; - 21,54; - \sqrt 7 ;\sqrt 5 \) lần lượt là: \(\frac{8}{{35}};\frac{5}{6};\frac{{18}}{7}; - 1,15;21,54;\sqrt 7 ; - \sqrt 5 \)
(Trả lời bởi Hà Quang Minh)
So sánh:
a) -1,(81) và -1,812;
b) \(2\frac{1}{7}\) và 2,142;
c) - 48,075…. và – 48,275….;
d) \(\sqrt 5 \) và \(\sqrt 8 \)
Thảo luận (2)Hướng dẫn giảia) Ta có: 1,(81) = 1,8181…
Vì 1,8181… > 1,812 nên -1,8181… < -1,812 hay -1,(81) < -1,812
b) Ta có: \(2\frac{1}{7}\) = 2,142857….
Vì 2,142857….> 2,142 nên \(2\frac{1}{7}\) > 2,142
c) Vì 48,075… < 48,275… nên - 48,075…. > – 48,275…
d) Vì 5 < 8 nên \(\sqrt 5 \) < \(\sqrt 8 \)
(Trả lời bởi Hà Quang Minh)
Tìm chữ số thích hợp cho
Thảo luận (2)Hướng dẫn giải