a) Dùng định nghĩa tỉnh đạo hàm của hàm số \(y = x\) tại điểm \(x = {x_0}\).
b) Nhắc lại đạo hàm của các hàm số \(y = {x^2},y = {x^3}\) đã tìm được ở bài học trước. Từ đó, dự đoán đạo hàm của hàm số \(y = {x^n}\) với \(n \in {\mathbb{N}^*}\).
a) Dùng định nghĩa tỉnh đạo hàm của hàm số \(y = x\) tại điểm \(x = {x_0}\).
b) Nhắc lại đạo hàm của các hàm số \(y = {x^2},y = {x^3}\) đã tìm được ở bài học trước. Từ đó, dự đoán đạo hàm của hàm số \(y = {x^n}\) với \(n \in {\mathbb{N}^*}\).
Tính đạo hàm của hảm số \(y = {x^{10}}\) tại \(x = - 1\) và \(x = \sqrt[3]{2}\).
Thảo luận (1)Hướng dẫn giảiTa có:\(\left(x^{10}\right)'=10x^9\).
Từ đó:\(y'\left(-1\right)=10.\left(-1\right)^9=-10\) và \(y'\left(\sqrt[3]{2}\right)=10.\left(\sqrt[3]{2}\right)^9=80\).
(Trả lời bởi Mai Trung Hải Phong)
Dùng định nghĩa, tính đạo hàm của hàm số \(y = \sqrt x \) tại điểm \(x = {x_0}\) với \({x_0} > 0\).
Thảo luận (1)Hướng dẫn giảitham khảo:
y′(x0)=\(lim_{x\rightarrow x_0}\)\(\dfrac{f\left(x\right)-f\left(x_0\right)}{x-x_0}\)
=\(lim_{x\rightarrow x_0}\)\(\dfrac{\sqrt{x}-\sqrt{x_0}}{\left(\sqrt{x}-\sqrt{x_0}\right).\left(\sqrt{x}+\sqrt{x_0}\right)}\)
=\(lim_{x\rightarrow x_0}\)\(\dfrac{1}{\sqrt{x}+\sqrt{x_0}}\)
=\(\dfrac{1}{\sqrt{x}+\sqrt{x_0}}\)\(=\dfrac{1}{2\sqrt{x_0}}\)
(Trả lời bởi Bùi Nguyên Khải)
Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \sqrt x \) tại điểm có hoành độ bằng 4.
Thảo luận (1)Hướng dẫn giải\({y_0} = \sqrt 4 = 2\)
Ta có: \({\left( {\sqrt x } \right)^\prime } = \frac{1}{{2\sqrt x }}\) nên tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( {4;2} \right)\) có hệ số góc là: \(f'\left( 4 \right) = \frac{1}{{2\sqrt 4 }} = \frac{1}{4}\)
Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\) là:
\(y - 2 = \frac{1}{4}\left( {x - 4} \right) \Leftrightarrow y = \frac{1}{4}x - 1 + 2 \Leftrightarrow y = \frac{1}{4}x + 1\).
(Trả lời bởi Hà Quang Minh)
Tìm đạo hàm của các hàm số:
a) \(y = \sqrt[4]{x}\) tại \(x = 1\);
b) \(y = \frac{1}{x}\) tại \(x = - \frac{1}{4}\);
Thảo luận (1)Hướng dẫn giảia) \(y' = {\left( {\sqrt[4]{x}} \right)^\prime } = {\left( {{x^{\frac{1}{4}}}} \right)^\prime } = \frac{1}{4}{x^{\frac{1}{4} - 1}} = \frac{1}{4}{x^{ - \frac{3}{4}}} = \frac{1}{{4\sqrt[4]{{{x^3}}}}}\)
\(y'\left( 1 \right) = \frac{1}{{4\sqrt[4]{{{1^3}}}}} = \frac{1}{4}\).
b) \(y' = {\left( {\frac{1}{x}} \right)^\prime } = - \frac{1}{{{x^2}}}\)
\(y'\left( { - \frac{1}{4}} \right) = - \frac{1}{{{{\left( { - \frac{1}{4}} \right)}^2}}} = - 16\).
(Trả lời bởi Hà Quang Minh)
Cho biết \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\). Dùng định nghĩa tính đạo hàm của hàm số \(y = \sin x\).
Thảo luận (1)Hướng dẫn giảiVới bất kì \({x_0} \in \mathbb{R}\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sin x - \sin {x_0}}}{{x - {x_0}}}\)
Đặt \(x = {x_0} + \Delta x\). Ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin \left( {{x_0} + \Delta x} \right) - \sin {x_0}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\cos \Delta x + \cos {x_0}\sin \Delta x - \sin {x_0}}}{{\Delta x}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\cos \Delta x - \sin {x_0}}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\cos {x_0}\sin \Delta x}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\left( {\cos \Delta x - 1} \right)}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \cos {x_0}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin \Delta x}}{{\Delta x}}\end{array}\)
Lại có:
\(\begin{array}{l}\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\left( {\cos \Delta x - 1} \right)}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\left( {\cos \Delta x - 1} \right)\left( {\cos \Delta x + 1} \right)}}{{\Delta x\left( {\cos \Delta x + 1} \right)}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\left( {{{\cos }^2}\Delta x - 1} \right)}}{{\Delta x\left( {\cos \Delta x + 1} \right)}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\left( { - {{\sin }^2}\Delta x} \right)}}{{\Delta x\left( {\cos \Delta x + 1} \right)}} = - \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin \Delta x}}{{\Delta x}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}.\sin \Delta x}}{{\left( {\cos \Delta x + 1} \right)}} = - 1.\frac{{\sin {x_0}.\sin 0}}{{\cos 0 + 1}} = 0\\\mathop {\lim }\limits_{\Delta x \to 0} \cos {x_0}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin \Delta x}}{{\Delta x}} = \cos {x_0}.1 = \cos {x_0}\end{array}\)
Vậy \(f'\left( {{x_0}} \right) = \cos {x_0}\)
Vậy \(f'\left( x \right) = \cos x\) trên \(\mathbb{R}\).
(Trả lời bởi Hà Quang Minh)
Tính đạo hàm của hàm số \(y = \tan x\) tại \(x = \frac{{3\pi }}{4}\).
Thảo luận (1)Hướng dẫn giảiTa có: \(y' = {\left( {\tan x} \right)^\prime } = \frac{1}{{{{\cos }^2}x}}\)
Vậy \(y'\left( {\frac{{3\pi }}{4}} \right) = \frac{1}{{{{\cos }^2}\left( {\frac{{3\pi }}{4}} \right)}} = 2\).
(Trả lời bởi Hà Quang Minh)
Cho biết \(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{x} = 1\) và \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln \left( {1 + x} \right)}}{x} = 1\). Dùng định nghĩa tính đạo hàm của các hàm số:
a) \(y = {e^x}\);
b) \(y = \ln x\).
Thảo luận (1)Hướng dẫn giảia) Với bất kì \({x_0} \in \mathbb{R}\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^x} - {e^{{x_0}}}}}{{x - {x_0}}}\)
Đặt \(x = {x_0} + \Delta x\). Ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0} + \Delta x}} - {e^{{x_0}}}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0}}}.{e^{\Delta x}} - {e^{{x_0}}}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0}}}.\left( {{e^{\Delta x}} - 1} \right)}}{{\Delta x}}\\ & = \mathop {\lim }\limits_{\Delta x \to 0} {e^{{x_0}}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}} = {e^{{x_0}}}.1 = {e^{{x_0}}}\end{array}\)
Vậy \({\left( {{e^x}} \right)^\prime } = {e^x}\) trên \(\mathbb{R}\).
b) Với bất kì \({x_0} > 0\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln {\rm{x}} - \ln {{\rm{x}}_0}}}{{x - {x_0}}}\)
Đặt \(x = {x_0} + \Delta x\). Ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {{x_0} + \Delta x} \right) - \ln {{\rm{x}}_0}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {\frac{{{x_0} + \Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\Delta x}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}}.\frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}}\end{array}\)
Đặt \(\frac{{\Delta x}}{{{x_0}}} = t\). Lại có: \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}} = \frac{1}{{{x_0}}};\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}} = \mathop {\lim }\limits_{t \to 0} \frac{{\ln \left( {1 + t} \right)}}{t} = 1\)
Vậy \(f'\left( {{x_0}} \right) = \frac{1}{{{x_0}}}.1 = \frac{1}{{{x_0}}}\)
Vậy \({\left( {\ln x} \right)^\prime } = \frac{1}{x}\) trên khoảng \(\left( {0; + \infty } \right)\).
(Trả lời bởi Hà Quang Minh)
Tìm đạo hàm của các hàm số:
a) \(y = {9^x}\) tại \(x = 1\);
b) \(y = \ln x\) tại \(x = \frac{1}{3}\).
Thảo luận (1)Hướng dẫn giảia) Ta có: \(y' = {\left( {{9^x}} \right)^\prime } = {9^x}\ln 9\).
Từ đó: \(y'\left( 1 \right) = {9^1}\ln 9 = 9\ln 9\).
b) Ta có: \(y' = {\left( {\ln x} \right)^\prime } = \frac{1}{x}\).
Từ đó: \(y'\left( {\frac{1}{3}} \right) = \frac{1}{{\frac{1}{3}}} = 3\).
(Trả lời bởi Hà Quang Minh)
Cho \(f\left( x \right)\) và \(g\left( x \right)\) là hai hàm số có đạo hàm tại \({x_0}\). Xét hàm số \(h\left( x \right) = f\left( x \right) + g\left( x \right)\).
Ta có \(\frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\)
nên \(h'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = ... + ...\)
Chọn biểu thức thích hợp thay cho chỗ chấm để tìm \(h'\left( {{x_0}} \right)\).
Thảo luận (1)Hướng dẫn giảiTa có: \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = f'\left( {{x_0}} \right);\mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = g'\left( {{x_0}} \right)\)
Vậy \(h'\left( {{x_0}} \right) = f'\left( {{x_0}} \right) + g'\left( {{x_0}} \right)\).
(Trả lời bởi Hà Quang Minh)