Bài 2. Cấp số cộng

Hoạt động 1 (Giải mục 1 trang 52, 53 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

Ta thấy:

a) Số sau hơn số liền trước 3 đơn vị.

b) Số sau hơn số liền trước 2 đơn vị.

c) Số sau hơn số liền trước 5 đơn vị.

d) Số sau hơn số liền trước 3 đơn vị.

Điểm giống nhau của các dãy số này là hai số hạng liền nhau hơn kém nhau một số không đổi.

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (2)

Thực hành 1 (Giải mục 1 trang 52, 53 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

a) Dãy số: 3; 7; 11; 15; 19; 23 là cấp số cộng có công sai \(d = 4\).

b) Ta có: \({u_{n + 1}} = 9\left( {n + 1} \right) - 9 = 9n + 9 - 9 = \left( {9n - 9} \right) + 9 = {u_n} + 9\).

Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng có công sai \({\rm{d}} = 9\).

c) Ta có: \({v_{n + 1}} = a\left( {n + 1} \right) + b = an + a + b = \left( {an + b} \right) + a = {v_n} + a\).

Vậy dãy số \(\left( {{v_n}} \right)\) là cấp số cộng có công sai \({\rm{d}} = a\).

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Thực hành 2 (Giải mục 1 trang 52, 53 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

Do tam giác đó là tam giác vuông nên có một góc bằng \({90^ \circ }\).

Giả sử hai góc còn lại của tam giác có số đo lần lượt là \(a,b\left( {{0^ \circ } < a,b < {{90}^ \circ }} \right)\).

Vì tổng ba góc trong tam giác bằng \({180^ \circ }\) nên ta có: \(a + b + {90^ \circ } = {180^ \circ } \Leftrightarrow a + b = {90^ \circ }\)(1).

Vì số đo ba góc trong tam giác lập thành cấp số cộng nên ta có:

\(b = \frac{{a + {{90}^ \circ }}}{2} \Leftrightarrow 2b = a + {90^ \circ } \Leftrightarrow  - a + 2b = {90^ \circ }\) (2)

Từ (1) và (2) ta có hệ phương trình sau:

\(\left\{ \begin{array}{l}a + b = {90^ \circ }\\ - a + 2b = {90^ \circ }\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = {30^ \circ }\\b = {60^ \circ }\end{array} \right.\)

Vậy số đo ba góc của tam giác vuông đó lần lượt là: \({30^ \circ };{60^ \circ };{90^ \circ }\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng 1 (Giải mục 1 trang 52, 53 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

Dãy số chỉ số ô trên vòng là: \(u_1=6;u_2=12;u_3=18;...\)

Ta thấy: \(u_{n+1}=u_n+6\)

Vậy ô trên các vòng theo thứ tự tạo thành cấp số cộng có công sai d = 6.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 2 (Giải mục 1 trang 52, 53 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

\(u_2-u_1=d\\ u_3-u_1=\left(u_2+d\right)-u_1=\left(u_2-u_1\right)+d=d+d=2d\\ ...\\ u_n-u_1=\left(n-1\right)d\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thực hành 3 (Giải mục 1 trang 52, 53 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

a, Số hạng tổng quát của cấp số cộng \(\left(a_n\right)\) là:

\(a_n=a_1+\left(n-1\right)d=5+\left(n-1\right)\left(-5\right)=5-5n+5=10-5n\)

b, Giả sử cấp số cộng \(\left(b_n\right)\) có công sai d, ta có:

\(b_{10}=b_1+\left(10-1\right)d\\ \Leftrightarrow20=2+9d\\ \Leftrightarrow9d=18\\ \Leftrightarrow d=2\)

Vậy số hạng tổng quát của cấp số cộng \(\left(b_n\right)\) là:

\(b_n=b_1+\left(n-1\right)d=2+\left(n-1\right)\cdot2=2+2n-2=2n\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng 2 (Giải mục 1 trang 52, 53 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

Giả sử cấp số cộng \(\left(c_n\right)\) có số hạng đầu \(c_1\) và công sai d.

Ta có: 

\(c_4=c_1+\left(4-1\right)d=c_1+3d\Leftrightarrow c_1+3d=80\left(1\right)\\ c_6=c_1+\left(6-1\right)d=c_1+5d\Leftrightarrow c_1+5d=40\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}c_1+3d=80\\c_1+5d=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c_1=140\\d=-20\end{matrix}\right.\)

Vậy số hạng tổng quát của cấp số cộng \(\left(c_n\right)\) là: 

\(c_n=c_1+\left(n-1\right)d=140+\left(n-1\right)\left(-20\right)=160-20\)

 

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 3 (Giải mục 1 trang 52, 53 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

\(a,u_1+u_n=u_1+\left[u_1+\left(n-1\right)d\right]=u_1+u_1+\left(n-1\right)d=2u_1+\left(n-1\right)d\\ u_2+u_{n-1}=\left[u_1+d\right]+\left[u_1+\left(n-2\right)d\right]=2u_1+\left(n-1\right)d\\ ...\\ u_k+u_{n-k+1}=\left[u_1+\left(k-1\right)d\right]+\left[u_1+\left(n-k+1-1\right)d\right]=2u_1+\left(n-1\right)d\)

\(b,u_1+u_n=2u_1+\left(n-1\right)d\\ u_2+u_{n-1}=2u_1+\left(n-1\right)d\\ ...\\ u_n+u_1=2u_1+\left(n-1\right)d\)

Cộng vế với vế, ta được:

\(2\left(u_1+u_2+...+u_n\right)=n\left[2u_1+\left(n-1\right)d\right]\\ \Leftrightarrow2\left(u_1+u_2+...+u_n\right)=n\left(u_1+u_n\right)\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thực hành 4 (Giải mục 1 trang 52, 53 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

a, Ta có thể sắp xếp 50 số tự nhiên chẵn đầu tiên thành cấp số cộng có số hạng đầu \(u_1=0\) và công sai \(d=2\)

b, Giả sử cấp số cộng có số hạng đầu \(u_1\) và công sai d.

Ta có: 

\(u_3+u_{28}=\left(u_1+2d\right)+\left(u_1+27d\right)=2u_1+29d\Leftrightarrow2u_1+29d=100\\ \Rightarrow S_{30}=\dfrac{30\cdot\left[2u_1+29d\right]}{2}=\dfrac{30\cdot100}{2}=1500\)

c, Giả sử cấp số cộng có số hạng đầu \(v_1\) và công sai \(d\)

Ta có: 

\(S_6=18\Leftrightarrow\dfrac{6\cdot\left[2v_1+5d\right]}{2}=18\Leftrightarrow2v_1+5d=6\left(1\right)\\ S_{10}=110\Leftrightarrow\dfrac{10\cdot\left[2v_1+9d\right]}{2}=110\Leftrightarrow2v_1+9d=22\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình: 

\(\left\{{}\begin{matrix}2v_1+5d=6\\2v_1+9d=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}v_1=-7\\d=4\end{matrix}\right.\)

\(\Rightarrow S_{20}=\dfrac{20\cdot\left[2v_1+19d\right]}{2}=\dfrac{20\cdot\left[2\cdot\left(-7\right)+19\cdot4\right]}{2}=620\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng 3 (Giải mục 1 trang 52, 53 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

Theo đề bài ta có dãy số chỉ số ghế có ở các hàng là một cấp số cộng có số hạng đầu \({u_1} = 17\) và công sai \(d = 3\).

a) Số ghế có ở hàng cuối cùng là: \({u_{20}} = {u_1} + 19{\rm{d}} = 17 + 19.3 = 74\) (ghế).

b) Tổng số ghế có trong rạp là: \({S_{20}} = \frac{{20\left[ {2{u_1} + 19{\rm{d}}} \right]}}{2} = \frac{{20\left[ {2.17 + 19.3} \right]}}{2} = 910\) (ghế).

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)