Chứng minh dãy số hữu hạn sau là cấp số cộng: \(1; - 3; - 7; - 11; - 15\).
Chứng minh dãy số hữu hạn sau là cấp số cộng: \(1; - 3; - 7; - 11; - 15\).
Cho \(\left( {{u_n}} \right)\) là cấp số cộng với số hạng đầu \({u_1} = 4\) và công sai \(d = - 10\). Viết công thức số hạng tổng quát \({u_n}\).
Thảo luận (1)Hướng dẫn giảiTa có:
\(u_n=u_1+\left(n-1\right)d\\ =4+\left(n-1\right)\cdot\left(-10\right)\\ =4-10n+10\\ =14-10n\)
(Trả lời bởi Hà Quang Minh)
Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = - 3\) và công sai \(d = 2\).
a) Tìm \({u_{12}}\).
b) Số 195 là số hạng thứ bao nhiêu của cấp số cộng đó?
Thảo luận (1)Hướng dẫn giải\(a,u_{12}=u_1+\left(12-1\right)d=u_1+11d=\left(-3\right)+11\cdot2=19\)
b, Giả sử số 195 là số hạng thứ n (n \(\in\) N*) của cấp số cộng.
Ta có:
\(u_n=u_1+\left(n-1\right)d\\ \Leftrightarrow195=-3+\left(n-1\right)\cdot2\\ \Leftrightarrow n=100\)
Vậy số 195 là số hạng thứ 100 của cấp số cộng.
(Trả lời bởi Hà Quang Minh)
Trong các dãy số sau đây, dãy số nào là cấp số cộng? Tìm số hạng đầu và công sai của nó.
a) \({u_n} = 3 - 4n\);
b) \({u_n} = \frac{n}{2} - 4\);
c) \({u_n} = {5^n}\); d) \({u_n} = \frac{{9 - 5n}}{3}\).
Thảo luận (1)Hướng dẫn giảia) Ta có: \({u_{n + 1}} = 3 - 4\left( {n + 1} \right) = 3 - 4n - 4 = - 1 - 4n\)
Xét hiệu: \({u_{n + 1}} - {u_n} = \left( { - 1 - 4n} \right) - \left( {3 - 4n} \right) = - 1 - 4n - 3 + 4n = - 4\)
Vậy dãy số là cấp số cộng có công sai \(d = - 4\).
b) Ta có: \({u_{n + 1}} = \frac{{n + 1}}{2} - 4 = \frac{n}{2} + \frac{1}{2} - 4 = \frac{n}{2} - \frac{7}{2}\)
Xét hiệu: \({u_{n + 1}} - {u_n} = \left( {\frac{n}{2} - \frac{7}{2}} \right) - \left( {\frac{n}{2} - 4} \right) = \frac{n}{2} - \frac{7}{2} - \frac{n}{2} + 4 = \frac{1}{2}\)
Vậy dãy số là cấp số cộng có công sai \(d = \frac{1}{2}\).
c) Ta có: \({u_1} = {5^1} = 5;{u_2} = {5^2} = 25;{u_3} = {5^3} = 125\)
Vì \({u_2} - {u_1} = 20;{u_3} - {u_2} = 100\) nên dãy số không là cấp số cộng.
d) Ta có: \({u_{n + 1}} = \frac{{9 - 5\left( {n + 1} \right)}}{3} = \frac{{9 - 5n - 5}}{3} = \frac{{4 - 5n}}{{3}}\)
Xét hiệu: \({u_{n + 1}} - {u_n} = \frac{{4 - 5n}}{3} - \frac{{9 - 5n}}{3} = \frac{{\left( {4 - 5n} \right) - \left( {9 - 5n} \right)}}{3} = \frac{{4 - 5n - 9 + 5n}}{3} = - \frac{5}{3}\)
Vậy dãy số là cấp số cộng có công sai \(d = - \frac{5}{3}\).
(Trả lời bởi Hà Quang Minh)
Tìm số hạng đầu và công sai của cấp số cộng \(\left( {{u_n}} \right)\), biết:
a) \(\left\{ \begin{array}{l}{u_3} - {u_1} = 20\\{u_2} + {u_5} = 54\end{array} \right.\);
b) \(\left\{ \begin{array}{l}{u_2} + {u_3} = 0\\{u_2} + {u_5} = 80\end{array} \right.\);
c) \(\left\{ \begin{array}{l}{u_5} - {u_2} = 3\\{u_8}.{u_3} = 24\end{array} \right.\).
Thảo luận (2)Hướng dẫn giải\(a,\left\{{}\begin{matrix}u_3-u_1=20\\u_2+u_5=54\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(u_1+2d\right)-u_1=20\\\left(u_1+d\right)+\left(u_1+4d\right)=54\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2d=20\\2u_1+5d=54\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}d=10\\u_1=2\end{matrix}\right.\)
Vậy cấp số cộng \(\left(u_n\right)\) có số hạng đầu \(u_1=2\) và công sai \(d=10\)
\(b,\left\{{}\begin{matrix}u_2+u_3=0\\u_2+u_5=80\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1+d+u_1+2d=0\\u_1+d+u_1+4d=80\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1=-60\\d=40\end{matrix}\right.\)
Vậy cấp số cộng \(\left(u_n\right)\) có số hạng đầu \(u_1=-60\) và công sai \(d=40\)
(Trả lời bởi Hà Quang Minh)
Một người muốn mua một thanh gỗ đủ để cắt ra làm các thanh ngang của một cái thang. Biết rằng chiều dài các thanh ngang của cái thang đó (từ bậc dưới cùng) lần lượt là 45 cm, 43 cm, 41 cm,…, 31 cm.
a) Cái thang đó có bao nhiêu bậc?
b) Tính chiều dài thanh gỗ mà người đó cần mua, giả sử chiều dài các mối nối (phần gỗ bị cắt thành mùn cưa) là không đáng kể.
Thảo luận (1)Hướng dẫn giảia, Theo đề bài, ta có dãy số chỉ chiều dài các thanh ngang của cái thang đó là một cấp số cộng có số hạng đầu là \(u_1=45\), số hạng cuối \(u_n=31\) và công sai \(d=-2\)
Ta có;
\(u_n=u_1+\left(n-1\right)d\\ \Leftrightarrow31=45+\left(n-1\right)\cdot\left(-2\right)\\ \Leftrightarrow n=8\)
Vậy cái thang đó có 8 bậc.
b, Chiều dài thanh gỗ mà người đó cần mua chính là tổng của 8 thanh ngang của cái thang đó.
Vậy chiều dài thanh gỗ mà người đó cần mua là:
\(S_8=\dfrac{8\cdot\left(u_1+u_8\right)}{2}=\dfrac{8\cdot\left(45+31\right)}{2}=304\left(cm\right)\)
(Trả lời bởi Hà Quang Minh)
Khi một vận động viên nhảy dù nhảy ra khỏi máy bay, gia sử quãng đường người ấy rơi tự do (tính theo feet) trong mỗi giây liên tiếp theo thứ tự trước khi bung dù lần lượt là: 16; 48; 80; 112; 144; ... (các quãng đường này tạo thành cấp số cộng).
a) Tính công sai của cấp số cộng trên.
b) Tính tổng chiều dài quãng đường rơi tự do của người đó trong 10 giây đầu tiên.
Thảo luận (1)Hướng dẫn giảia, Ta có:
\(48=16+32\\ 80=48+32\\ 112=80+32\\ 144=112+32\\ ...\)
Vậy dãy số trên là cấp số cộng có số hạng đầu \(u_1=16\) và công sai \(d=32\)
b, Tổng chiều dài quãng đường rơi tự do của người đó trong 10s đầu tiên là:
\(S_{10}=\dfrac{10\cdot\left[u_1+\left(10-1\right)d\right]}{2}=\dfrac{10\cdot\left[2u_1+9d\right]}{2}=\dfrac{10\cdot\left(2\cdot16+9\cdot32\right)}{2}=1600\left(feet\right)\)
(Trả lời bởi Hà Quang Minh)
Ở một loài thực vật lưỡng bội, tình trạng chiều cao cây do hai gene không alen là A và B cùng định theo kiểu tương tác cộng gộp. Trong kiểu gene nếu cứ thêm một alen trội A hay B thì chiều cao cây tăng thêm 5 cm. Khi trưởng thành, cây thấp nhất của loài này với kiểu gene aabb có chiều cao 100 cm. Hỏi cây cao nhất với kiểu gene AABB có chiều cao bao nhiêu?
Thảo luận (1)Hướng dẫn giảiCây cao nhất với kiểu gene AABB có chiều cao là: \(100+5\cdot4=120\left(cm\right)\)
(Trả lời bởi Hà Quang Minh)