Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2023 lúc 23:12

a: Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=15^2+20^2=625\)

=>\(BC=\sqrt{625}=25\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot25=15\cdot20=300\)

=>\(AH=\dfrac{300}{25}=12\left(cm\right)\)

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(3\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(4\right)\)

Từ (3) và (4) suy ra \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Do đó: ΔAMN đồng dạng với ΔACB

c: Ta có: ΔABC vuông tại A

mà AK là đường trung tuyến

nên AK=KC=KB

Ta có: KA=KC

=>ΔKAC cân tại K

=>\(\widehat{KAC}=\widehat{KCA}\)

Ta có: ΔAMN đồng dạng với ΔACB

=>\(\widehat{ANM}=\widehat{ABC}\)

Ta có: \(\widehat{KAC}+\widehat{ANM}\)

\(=\widehat{ABC}+\widehat{KCA}=90^0\)

=>AK\(\perp\)MN tại I

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2;CH\cdot BC=CA^2\)

=>\(BH\cdot25=15^2=225;CH\cdot25=20^2=400\)

=>BH=225/25=9(cm); CH=400/25=16(cm)

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\)

=>\(AM\cdot15=12^2\)=144

=>AM=144/15=9,6(cm)

Ta có: AMHN là hình chữ nhật

=>AH=MN

mà AH=12cm

nênMN=12cm

Ta có: ΔANM vuông tại A

=>\(AN^2+AM^2=NM^2\)

=>\(AN^2+9,6^2=12^2\)

=>AN=7,2(cm)

Xét ΔIMA vuông tại I và ΔAMN vuông tại A có

\(\widehat{IMA}\) chung

Do đó: ΔIMA đồng dạng với ΔAMN

=>\(\dfrac{S_{IMA}}{S_{AMN}}=\left(\dfrac{AM}{MN}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)

=>\(S_{IMA}=\dfrac{16}{25}\cdot\dfrac{1}{2}\cdot AM\cdot AN=22,1184\left(cm^2\right)\)

hibiki
Xem chi tiết
Nguyễn Ngọc Bảo Trâm
Xem chi tiết
Trúc Giang
26 tháng 3 2020 lúc 10:07

Violympic toán 7

Tính chất đường trung trực của một đoạn thẳng

b) Vì ΔAHC = ΔAHB ( câu a )

=> BH = HC ( Hai cạnh tương ứng )

Xét ΔBHN và ΔCHM, ta có:

BH = HC ( cmt )

Góc BHN = Góc CHM ( Hai góc đối đỉnh )

HN = HM ( gt )

=> ΔBHN = ΔCHM ( c-g-c )

=> Góc HMC = Góc BNH ( Hai góc tương ứng )

Mà góc HMC và góc BNH là hai góc so le trong

=> BN // AC

c)Chương II : Tam giác

Khách vãng lai đã xóa
Hạ Hy
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 6 2022 lúc 21:41

a: Xét ΔAHC vuôg tại H và ΔAHB vuông tại H có

AB=AC

AH chung

DO đo: ΔAHC=ΔAHB

b: Xét tứ giác BMCN có

H là trung điểm của BC

H là trung điểm của MN

DO đó: BMCN là hình bình hành

Suy ra: BN//AC

c: Xét ΔAQH vuông tạiQ và ΔAMH vuông tại M có

AH chung

\(\widehat{QAH}=\widehat{MAH}\)

Do đó: ΔAQH=ΔAMH

Suy ra: HQ=HM

=>HQ=1/2MN

=>ΔMQN vuông tại Q

Xét ΔBQH vuông tạiQ và ΔBNH vuông tại N có

BH chung

HQ=HN

Do đó; ΔBQH=ΔBNH

Suy ra: BQ=BN

=>BH là đường trung trực của QN

Hà Nguyễn Thanh Hải
Xem chi tiết
Nguyễn Ngọc Lộc
10 tháng 2 2020 lúc 10:21

A B C H M N

- Ta có : \(\Delta ABC\) cân tại A .

=> AB = AC ( Tính chất tam giác cân )

=> \(\widehat{ABH}=\widehat{ACH}\) ( Tính chất tam giác cân )

- Xét \(\Delta AHB\)\(\Delta AHC\) có :

\(\left\{{}\begin{matrix}AB=AC\left(cmt\right)\\\widehat{ABH}=\widehat{ACH}\left(cmt\right)\\AH=AH\end{matrix}\right.\)

=> \(\Delta AHB\) = \(\Delta AHC\) ( c - g -c )

b, Ta có : \(\Delta AHB\) = \(\Delta AHC\) ( câu a )

=> BH = CH ( cạnh tương ứng )

- Xét \(\Delta HMB\)\(\Delta HNC\) có :

\(\left\{{}\begin{matrix}\widehat{HMB}=\widehat{HNC}\left(=90^o\right)\\BH=CH\left(cmt\right)\\\widehat{ABC}=\widehat{ACB}\left(cmt\right)\end{matrix}\right.\)

=> \(\Delta HMB\) = \(\Delta HNC\) ( Ch - Cgv )

=> MB = NC ( cạnh tương ứng )

Ta có : \(\left\{{}\begin{matrix}AB=AM+BM\\AC=AN+CN\end{matrix}\right.\)

Mà AB = AC (tam giác cân )

=> \(AM=AN\)

- Xét \(\Delta AMN\) có : AM = AN ( cmt )

=> \(\Delta AMN\) là tam giác cân tại A ( đpcm )

c, - Ta có : \(\Delta AMN\) cân tại A ( cmt )

=> \(\widehat{AMN}=\widehat{ANM}\)

\(\widehat{AMN}+\widehat{ANM}+\widehat{MAN}=180^o\)

=> \(\widehat{2AMN}+\widehat{MAN}=180^o\)

=> \(\widehat{AMN}=\frac{180^o-\widehat{MAN}}{2}\) ( I )

- Ta có : \(\Delta ABC\) cân tại A .

=> \(\widehat{ABC}=\widehat{ACB}\)

\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)

=> \(\widehat{2ABC}+\widehat{BAC}=180^o\)

=> \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\) ( II )

Ta có : \(\widehat{ABC}=\widehat{AMN}\left(=\frac{180^o-\widehat{BAC}}{2}\right)\)

Mà 2 góc trên ở vị trí đồng vị .

=> MN // BC ( Tính chất 2 đoạn thẳng song song )

Khách vãng lai đã xóa
Nguyễn Ngọc Lộc
10 tháng 2 2020 lúc 14:11

d, ( Hình vẽ câu trên nha )

- Áp dụng định lý pi - ta - go vào \(\Delta AHB\perp H\) có :

\(AH^2+BH^2=AB^2\)

Khách vãng lai đã xóa
Nguyễn Ngọc Lộc
10 tháng 2 2020 lúc 14:12

- Xét \(\Delta AMH\)\(\Delta AHB\) có :

\(\left\{{}\begin{matrix}\widehat{MAH}=\widehat{BAH}\\\widehat{AMH}=\widehat{AHB}\left(=90^o\right)\end{matrix}\right.\)

Khách vãng lai đã xóa
Linh Vu Khanh
Xem chi tiết
Lê Hoàng Quyên
14 tháng 2 2020 lúc 15:28

A B C M N H a) Xét △ABC,ta có :△ABC cân tại A nên

AB=AC, ∠ABC = ∠ACB( t/c tam giác cân)

Vì AH⊥BC nên ∠AHB = ∠AHC

# Xét △AHB vs △AHC, ta có :

∠AHB=∠AHC(=90o)

AB=AC

∠ABC = ∠ACB

⇒△AHB = △AHC(ch-gn)

⇒HB=HC( 2 cạnh tương ứng )

b)Vì △AHB = △AHC(cmt) nên ∠HAB = ∠HAC(2 góc tương ứng)

Vì HM ⊥ AB nên ∠HMA =90o

Vì HN ⊥ AC nên ∠HMB =90o

#Xét △AHM vs △AHN, ta có:

∠AHM =∠AHN(=90o)

AH là cạnh chung

∠MAH=∠NAH(cmt)

⇒△AHM = △AHN (ch-gn)

c) Lúc nữa. khocroi

Khách vãng lai đã xóa
Nha Phuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2020 lúc 14:07

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH là cạnh chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

b) Ta có: ΔABH=ΔACH(cmt)

\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{MAH}=\widehat{NAH}\)

Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH là cạnh chung

\(\widehat{MAH}=\widehat{NAH}\)(cmt)

Do đó: ΔAMH=ΔANH(cạnh huyền-góc nhọn)

⇒AM=AN(hai cạnh tương ứng)

c) Ta có: ΔAHB=ΔAHC(cmt)

⇒HB=HC(hai cạnh tương ứng)

Xét ΔBMH và ΔCNH có

HB=HC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy trong ΔABC cân tại A)

Do đó: ΔBMH=ΔCNH(cạnh huyền-góc nhọn)

d) Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(định nghĩa tam giác cân)

\(\widehat{AMN}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

\(\widehat{AMN}\)\(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên MN//BC(dấu hiệu nhận biết hai đường thẳng song song)

e)

*Tính AB

Ta có: HB=HC(cmt)

mà HB+HC=BC(H nằm giữa B và C)

nên \(BH=CH=\frac{BC}{2}=\frac{12cm}{2}=6cm\)

Áp dụng định lí pytago vào ΔABH vuông tại H, ta được

\(AB^2=BH^2+AH^2\)

hay \(AB^2=6^2+8^2=100\)

\(AB=\sqrt{100}=10cm\)

Vậy: AB=10cm

Dương Nguyễn
Xem chi tiết
Phạm Hoàng Hải Anh
11 tháng 6 2019 lúc 14:54

a, Xét \(\Delta AHBvà\Delta CABcó:\)

\(\widehat{AHB}=\widehat{CAB}=90^0\)

\(\widehat{ABH}=\widehat{CBA}\)(là góc chung )

Vậy \(\Delta AHB\sim\Delta CAB\left(g-g\right)\)

\(\Rightarrow\frac{AB}{BC}=\frac{BH}{AB}\)

hay

Ngưu Kim
Xem chi tiết
Phú Hưng (Phú và Hưng)
7 tháng 3 2020 lúc 18:24

Violympic toán 7

a) Vì tam giác ABC cân tại A

=> AB = AC và Góc ABC = Góc ACB

Xét tam giác AHC và tam giác AHB, ta có:

Góc AHB = AHC ( = 90 độ )

AB = AC (cmt)

Góc ABC = Góc ACB ( cmt)

=> Tam giác AHC = Tam giác AHB ( ch-gn )

b) Vì tam giác AHC = Tam giác AHB ( câu a )

=> BH = HC ( Hai cạnh tương ứng )

Xét tam giác BHN và tam giác CHM, ta có:

BH = HC ( cmt )

Góc BHN = Góc CHM ( Hai góc đối đỉnh )

HN = HM ( gt )

=> Tam giác BHN = Tam giác CHM ( c-g-c )

=> Góc HMC = Góc BNH ( Hai góc tương ứng )

Mà góc HMC và góc BNH là hai góc so le trong

=> BN // AC

c) Xét tam giác MHC và tam giác QHB, ta có:

Góc HMC = Góc HQB ( = 90 độ )

Góc MCH = Góc QBH ( do tam giác ABC cân tại A )

HC = HB ( câu b )

=> Tam giác MHC = Tam giác QHB ( ch-gn )

=> Góc MHC = Góc QHB

Mà góc MHC = Góc BHN ( Hai góc đối đỉnh )

=> Góc QHB = Góc BHN

Xét tam giác AQH và tam giác AMH, ta có:

Góc AQH = Góc AMH ( = 90 độ )

AH là cạnh huyền chung

Góc QAH = Góc MAH ( vì tam giác ABH = tam giác ACH )

=> Tam giác AQH = Tam giác AMH ( ch-gn )

=> QH = HM ( Hai cạnh tương ứng )

Mà HM = HN ( gt )

=> QH = HN

Gọi K là trung điểm của QN

Xét tam giác KHQ và tam giác KHN, ta có:

HQ = HN ( cmt )

Góc QHB = Góc BHN ( cmt )

HK là cạnh chung

=> Tam giác KHQ = Tam giác KHN ( c-g-c )

=> Góc QKH = Góc NKH ( Hai góc tương ứng ) và QK = QN ( Hai cạnh tương ứng )

Mà góc QKH và góc NKH là hai góc kề bù

=> Góc QKH = Góc NKH = 180/2 = 90 độ

=> HK là đường trung trực của QN

Hay BC là đường trung trực của QN

Khách vãng lai đã xóa